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Transverse and Longitudinal Waves
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This substitution will yield a relationship between the frequency 
σ and wavenumber K in the form

σ = σ(k, l, m) = σ(K) K = wavenumber vector

→ the dispersion relation

All linear wave problems will result in a governing PDE of the 
form

The approach to solving this PDE will generally be to assume 
solutions of the form

e =( , , )( ) Kσϕ + + −i kx ly mz t k l m∼

( ) 0ϕℜ = ℜ(      is a linear differential operator )



Along the wavenumber vector, a line of constant phase moves at 
a speed given by

Note that this applies only to a single, monochromatic wave, and 
note that c is not a vector in the normal sense,

Phase speed  (NOT phase velocity)….
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A more useful description…..group velocity

Group velocity:   the motion of a packet of waves
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kko

The distribution of amplitudes of a wave packet in k-space



Suppose there is a wave packet moving in the +x direction, which can be 
written as

( )( , ) ( )e eikx i k tx t A k dkσϕ −= ∫
and further suppose that A(k) is peaked around a wavenumber ko.

In the vicinity of ko the dispersion relation is
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Rossby waves in the atmosphere [500 mb pressure]
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[ what about the ocean? ]



A Short History of Rossby Waves

• Laplace (1799) formulated and discussed his tidal 
equations and showed 2 types of solutions (“Motions of the 
First Class”, and “Motions of the Second Class”).

• Margules (1893) examined the free oscillations of a 
rotating, planetary atmosphere, confirming the existence of 
Laplace’s second class solutions.

• Hough (1898) examined the free oscillations of a global 
ocean of uniform depth, again confirming the second class 
solutions, and found the eigenfunctions of the solution on a 
sphere.

• Rossby (1939) introduced the β-plane approximation and 
was able to study the transformed Laplace tidal equations 
in detail for the atmosphere, resulting in important 
advances in the study of Laplace’s motions of the second 
class.



Laplace’s Tidal Equations (LTE)
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The LTE can be combined to form a single PDE in 
terms of the variable η (sea level):
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This is a formidable PDE to solve; it is not generally 
separable in θ and λ.  Approximate solutions have been 
found by Margules, Hough, Longuet-Higgins, and others.



Hough’s approximate solution:  eigenfunctions on 
of the LTE on a sphere in terms of Legendre 
polynomials (later called Hough functions).
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Rossby’s Contribution:  The β - plane
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the β− plane approximation; replaces spherical coordinates with Cartesian coordinates
[see Veronis (1963) for a complete treatment]
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Note that only the first term of the Taylor series in λ has 
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Use of the β − plane
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These can be combined into a single PDE for v :
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The first few Hermite functions, showing the meridional structure of 
equatorially-trapped waves (note:  Δ ∼ 300 km)
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The separated ODE yields the dispersion relation

n = 0, 1, 2, ……

which is cubic in σ and thus has 3 roots for σ for 
any choice of n .



The dispersion relation for near-Equatorial waves, determined from 
the eigenvalue ODE; note that there are several distinct types of 
waves.
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Case (2):  away from the Equator, so that f  = fo + β y .
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However, using the geostrophic approximation, 
we can make an initial estimate of the solution:
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the Rossby wave equation
[ a vorticity equation ]
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( )2 2 0i k l i kσ β− + + =

This substitution yields

which becomes the dispersion relation for Rossby waves,
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Note the east-west 
phase speed:

A single Rossby wave 
always propagates to 
the west (eastward 
propagation not 
allowed) !

Take k ∼ 2π /1000 km, l = 0, then σ ∼ 2π /(44 days)  → σ /k ∼ 40 cm/sec .
For the North Pacific, about 104 km wide, this wave would require 
about 229 days to cross the basin.
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Rossby wave dispersion relation

Notes:

(1) The longest waves ( k, l → 0 ) have the highest temporal frequencies, σ → ∞ .

(2) Thus, to observe high-frequency waves, observations must be made over 
large spatial scales; or,

(3) To observe short waves, observations must be collected over a long time.

Taken together, (1)−(3) suggest it will be 
difficult to observe these waves in the ocean.



Group velocity….
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Result:  the east-west group velocity of  a packet of Rossby waves 
can be either in the east or the west direction, but the east-west 
phase speed for a single wave can be only in the westward
direction !
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Effects of stratification….
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( ) ( )ei kx ly tz σψ φ + −=

( ) cos , /z mz m n Hφ π= =
solution for N = constant, with boundary conditions that 
w = 0 at the sea surface and bottom

For a more realistic solution, take N = Noeaz (exponential stratification),
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Vertical modal structure….
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Dispersion relation….

2
2 2 2

2

n
o

n
o

k
fk l c
N

βσ = −
+ +

For a given k and l , the 
baroclinic Rossby waves 
have a longer period than 
the barotropic waves

Take k ∼ 2π /500 km, l = 0, n =1, then σ ∼ 2π /(370 days) ;   σ /k ∼ 1.3 cm/sec

For the North Pacific, approximately 104 km wide, this wave would take about 
20 years to cross the basin.

Thus, baroclinic Rossby waves might travel very slowly (compared 
to barotropic waves) and would seem to be inherently nonlinear; 
this calls into question their possible existence.



The linear wave assumption….
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otherwise the wave is nonlinear and 
likely unstable.
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Other important issues related to simple Rossby waves:

• Effects of topography 

• Wave-mean flow interactions

• Effects of coastlines (reflection properties)

• Nonlinearities
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In a 5000 m ocean at 
30°N, a change in depth 
of 50 meters over a N/S 
distance of ∼ 85 km is the 
same size as the β-effect 
in the vorticity equation.



Pacific Island tide gauge stations

[Wunsch and Gill, 1976]
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The Pacific TAO Array

[Kessler and McPhaden, 1995]

20°C isotherm depth during the 
1992-1993 El Niño event
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[McPhaden and Xu, 1999]

Measured quantities from 
the TAO array during the 
1997-1998 El Niño event

Fits of a few equatorial 
waves to the observations



21°N

32°N

39°NObservations of Rossby Waves from Altimetry

[Chelton and Schlax, 1996]



13 April 1993 31 July 1993

Rossby wave propagation is clearly evident near the Equator; at 
other latitudes is is more difficult to see, and the sea level field is 
less spatially coherent.

[Chelton and Schlax, 1996]



[Chelton and Schlax, 1996]

The approximate ratio of particle 
speed to phase speed as a function 
of latitude for the Pacific

Result:  nonlinearity is 
generally very large except 
near the Equator!



The trajectories of 18 
acoustically-tracked floats 
at a depth of 1300 m in the 
western N. Atlantic during 
the period 16 May through 
11 July, 1979.  Note the 
wavelike motion with 
particles oscillating on 
NE/SW trajectories.

[Price and Rossby, 1982]
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The inferred dispersion curve from the Price-Rossby study

•

[Price and Rossby, 1982]



Estimates of individual terms in the potential vorticity equation from the 
1300 m float array, showing approximate balance.

[Price and Rossby, 1982]
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Summary

• Rossby waves are the “motions of the second class”
originally found by Laplace and studied by many others.

• Rossby’s contribution was to formulate the theoretical 
problem in Cartesian coordinates, using his β-plane 
approximation, allowing useful solutions to be found.

• The properties of Rossby waves (their dispersion 
relation) make them inherently difficult to observe.

• It seems likely that nonlinear effects in Rossby waves 
are quite strong outside of the near-Equatorial ocean.


