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Transverse and Longitudinal Waves
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All linear wave problems will result in a governing PDE of the 

form

The approach to solving this PDE will generally be to assume 

solutions of the form

( ) 0 = (      is a linear differential operator )

𝜑~e𝑖(𝑘𝑥+𝑙𝑦+𝑚𝑧−𝜎𝑡) 𝑲 = (𝑘, 𝑙, 𝑚)

This substitution will yield a relationship between the frequency  and 

wavenumber K in the form 

𝜎 = 𝜎 𝑘, 𝑙, 𝑚 =  𝜎(𝑲)
                          [ K = wavenumber vector ]

                      → the dispersion relation



Along the wavenumber vector, a line of constant phase moves at 

a speed given by 

           

Note that this applies only to a single, monochromatic wave, and 

note that c is not a vector in the normal sense,

Phase speed  (NOT phase velocity)….
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A more useful description…..group velocity

Group velocity:   the motion of a packet of waves

A(k)

kko

The distribution of amplitudes of a wave packet in k-space



Suppose there is a wave packet moving in the +x direction, which can be 

written as

( )( , ) ( )e eikx i k tx t A k dk −= 
and further suppose that A(k) is peaked around a wavenumber ko.

In the vicinity of ko the dispersion relation is
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Rossby waves in the atmosphere [500 mb pressure]

Jet stream
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[ what about the ocean? ]



A Short History of Rossby Waves

• Laplace (1799) formulated and discussed his tidal 

equations and showed 2 types of solutions (“Motions of the 

First Class”, and “Motions of the Second Class”).

• Margules (1893) examined the free oscillations of a 

rotating, planetary atmosphere, confirming the existence of 

Laplace’s second class solutions.

• Hough (1898) examined the free oscillations of a global 

ocean of uniform depth, again confirming the second class 

solutions, and found the eigenfunctions of the solution on a 

sphere.

• Rossby (1939) introduced the -plane approximation and 

was able to study the transformed Laplace tidal equations 

in detail for the atmosphere, resulting in important 

advances in the study of Laplace’s motions of the second 

class.



Laplace’s Tidal Equations (LTE)
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The LTE can be combined to form a single PDE in 

terms of the variable  (sea level):
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This is a formidable PDE to solve; it is not generally 

separable in  and .  Approximate solutions have been 

found by Margules, Hough, Longuet-Higgins, and others.



Hough’s approximate solution:  eigenfunctions on 

of the LTE on a sphere in terms of Legendre 

polynomials (later called Hough functions).
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Rossby’s Contribution:  The  - plane
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[see Veronis (1963) for a complete treatment]
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The  − plane

Note that only the first term of the Taylor series in  has 

been kept; this implies that  y << fo for consistency.
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Use of the  − plane
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These can be combined into a single PDE for v :
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The first few Hermite functions, showing the meridional structure of 

equatorially-trapped waves (note:    300 km)
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The separated ODE yields the dispersion relation

n = 0, 1, 2, ……

which is cubic in   and thus has 3 roots for   for 

any choice of n .



The dispersion relation for near-Equatorial waves, determined from 

the eigenvalue ODE; note that there are several distinct types of 

waves.
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 [resulting PDE admits a variety of solutions]

However, using the geostrophic approximation, 

we can make an initial estimate of the solution:
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geostrophic balance: 

generally accurate to 

within 1-2% error at 

mid-latitudes on time 

scales > a few days and 
length scales > 10s of 

kilometers
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( )2 2 0i k l i k − + + =

This substitution yields

which becomes the dispersion relation for Rossby waves,
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Note the east-west 

phase speed:

A single Rossby wave 

always propagates to 

the west (eastward 

propagation not 

allowed) !

Take k  2 /1000 km, l = 0, then   2 /(44 days)  →  /k  40 cm/sec .

For the North Pacific, about 104 km wide, this wave would require 

about 229 days to cross the basin.
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Rossby wave dispersion relation

Notes:

(1) The longest waves ( k, l → 0 ) have the highest temporal frequencies,  →  .

(2) Thus, to observe high-frequency waves, observations must be made over 
large spatial scales; or,

(3) To observe short waves, observations must be collected over a long time.

Taken together, (1)−(3) suggest it will be 

difficult to observe these waves in the ocean.



Group velocity….
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Result:  the east-west group velocity of  a packet of Rossby waves 

can be either in the east or the west direction, but the east-west 

phase speed for a single wave can be only in the westward 

direction !
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Effects of stratification….
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Dispersion relation….
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For a given k and l , the 

baroclinic Rossby waves 

have a longer period than 
the barotropic waves

Take k  2 /500 km, l = 0, n =1, then   2 /(370 days) ;    /k  1.3 cm/sec

For the North Pacific, approximately 104 km wide, this wave would take about 
20 years to cross the basin.

Thus, baroclinic Rossby waves might travel very slowly (compared 

to barotropic waves) and would seem to be inherently nonlinear; 

this calls into question their possible existence.



The linear wave assumption….

particle speed phase speed

For a linear wave, the speed of the 

fluid particles in the wave has to be 

much less than the wave phase speed; 

otherwise the wave is nonlinear and 

likely unstable.

neglected nonlinear terms
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Other important issues related to simple Rossby waves:

• Effects of topography 

• Wave-mean flow interactions

• Effects of coastlines (reflection properties)

• Nonlinearities

suppose

In a 5000 m ocean at 

30N, a change in depth 
of 50 meters over a N/S 
distance of  85 km is the 

same size as the -effect 
in the vorticity equation.

𝛽𝑦

𝑓𝑜
≪ 1 ; 

𝛽𝑦

𝑓𝑜
 ~

𝛿ℎ

ℎ
 = 0.01 ⟹ 



Pacific Island tide gauge stations

[Wunsch and Gill, 1976]
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[4-5 day band]
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[Wunsch and Gill, 1976]



The Pacific TAO Array

[Kessler and McPhaden, 1995]

20C isotherm depth during the 

1992-1993 El Niño event
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[McPhaden and Xu, 1999]

Measured quantities from 

the TAO array during the 

1997-1998 El Niño event 

Fits of a few equatorial 

waves to the observations



21N

32N

39N
Observations of Rossby Waves from Altimetry

[Chelton and Schlax, 1996]



13 April 1993 31 July 1993

Rossby wave propagation is clearly evident near the Equator; at 

other latitudes is is more difficult to see, and the sea level field is 

less spatially coherent.

[Chelton and Schlax, 1996]



[Chelton and Schlax, 1996]

The approximate ratio of particle 

speed to phase speed as a function 

of latitude for the Pacific

Result:  nonlinearity is 

generally very large except 

near the Equator!



The trajectories of 18 

acoustically-tracked floats 

at a depth of 1300 m in the 

western N. Atlantic during 

the period 16 May through 
11 July, 1979.  Note the 

wavelike motion with 

particles oscillating on 

NE/SW trajectories.

[Price and Rossby, 1982]
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The inferred dispersion curve from the Price-Rossby study

•

[Price and Rossby, 1982]



Estimates of individual terms in the potential vorticity equation from the 

1300 m float array, showing approximate balance.

[Price and Rossby, 1982]

planetary

relative

topographic

error



Summary

• Rossby waves are the “motions of the second class” 

originally found by Laplace and studied by many others.

• Rossby’s contribution was to formulate the theoretical 

problem in Cartesian coordinates, using his -plane 

approximation, allowing useful solutions to be found.

• The properties of Rossby waves (their dispersion 

relation) make them inherently difficult to observe.

• It seems likely that nonlinear effects in Rossby waves 

are quite strong outside of the near-Equatorial ocean.
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