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ABSTRACT: Acoustically tracked subsurface floats provide insights into ocean complexity and were first deployed over
60 years ago. A standard tracking method uses a least squares algorithm to estimate float trajectories based on acoustic
ranging from moored sound sources. However, infrequent or imperfect data challenge such estimates, and least squares
algorithms are vulnerable to non-Gaussian errors. Acoustic tracking is currently the only feasible strategy for recovering
float positions in the sea ice region, a focus of this study. Acoustic records recovered from underice floats frequently lack
continuous sound source coverage. This is because environmental factors such as surface sound channels and rough sea ice
attenuate acoustic signals, while operational considerations make polar sound sources expensive and difficult to deploy.
Here we present a Kalman smoother approach that, by including some estimates of float behavior, extends tracking to sit-
uations with more challenging datasets. The Kalman smoother constructs dynamically constrained, error-minimized float
tracks and variance ellipses using all possible position data. This algorithm outperforms the least squares approach and a
Kalman filter in numerical experiments. The Kalman smoother is applied to previously tracked floats from the southeast
Pacific (DIMES experiment), and the results are compared with existing trajectories constructed using the least squares
algorithm. The Kalman smoother is also used to reconstruct the trajectories of a set of previously untracked, acoustically
enabled Argo floats in the Weddell Sea.
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1. Introduction

From their introduction, autonomous, acoustically tracked
instruments have explored poorly sampled ocean areas and
provided fundamental insight into ocean dynamics (Gould
2005). First deployed in 1955 (Swallow 1955), autonomous
float endurance has improved from days to years and now rep-
resents a mature technology (Rossby et al. 1986; Roemmich
et al. 2019). Thousands of acoustically tracked floats have
been deployed in most of the world’s oceans at depths ranging
from just below the surface to 4000 m (Ramsey et al. 2018).
Acoustically tracked floats are typically localized at 6-h to
daily intervals and have relatively high temporal resolution
compared to mesoscale circulation. Lagrangian observations
have been used to study mesoscale eddies, infer large-scale cir-
culation (Boebel et al. 1997), and investigate stirring (Gille
et al. 2007) and abyssal circulation (Hogg and Owens 1999).

Modern acoustic float instrumentation and methodology,
developed by Rossby et al. (1986), is called RAFOS and con-
sists of an acoustic receiver on each float. An array of moored
sound sources (see Figs. 1–3) transmits sound at staggered in-
tervals. Sound pulses received and recorded by a float are
used to calculate a range from the float to the sound source.
The float can be localized if multiple sound pulses are heard
(ideally three or more) (Figs. 2, 3). Unstable or unusable tra-
jectories can result if sufficiently precise ranging observations

are not available. The publicly available ARTOA software
package has automated this localization process with a least
squares algorithm (Wooding et al. 2005; WHOI 2017). All
sound sources broadcast at the same frequency, and this am-
biguity can confound float tracking, as noted by Hogg and
Owens (1999). The ARTOA algorithm makes no predictive
estimate of float location; hence, it can be difficult to distin-
guish likely sound sources.

Autonomous floats can be particularly useful in sea ice–
covered polar regions with substantial seasonal cycles (Gray
et al. 2018). Polar regions are important for water mass trans-
formation, subduction of heat and carbon, and ventilation of
nutrients (Sarmiento et al. 2004). Polar regions are difficult to
navigate; consequently, shipboard data coverage is poor and
seasonally biased toward the warmer summer months (Riser
et al. 2016). Argo floats are a tool for studying ocean structure
and processes on many spatial and temporal scales (Riser et al.
2016; Johnson et al. 2022). With the advent of increasingly
miniaturized sensors, Argo floats are now collecting data rele-
vant to biogeochemistry and mixing (Johnson and Claustre
2016; Roemmich et al. 2019). The Weddell Sea has been ob-
served with numerous autonomous drifting Argo floats that
profile to the sea surface every 10 days, operating with sea ice
avoidance software (Klatt et al. 2007; Reeve et al. 2016;
Campbell et al. 2019). However, such polar observations are
still challenging due to environmental factors (Abrahamsen
2014). Argo floats that happen to journey underneath the ice
may spend more than a year unable to acquire position data.
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important for understanding their true significance, but posi-
tion uncertainty grows with the duration of position loss
(Chamberlain et al. 2018; Yamazaki et al. 2020; Wallace et al.
2020; Nguyen et al. 2020). Float trajectories can also infer
important ocean dynamics. These dynamics are resolved at
a scale of motion related to both the density of float trajec-
tories and the fidelity to which the true float trajectories
are resolved from observations.

Acoustic tracking is, currently, the only technology for esti-
mating float position under sea ice. In addition to nonprofiling
RAFOS-type floats, some Argo floats in the Weddell Sea
have been outfitted with acoustic RAFOS receivers to allow
underice tracking (Klatt et al. 2007). However, the polar lati-
tudes are environmentally challenging for straightforward
acoustic tracking. Temperature decreases toward the surface
in ice-covered seas; thus, sound is refracted to the surface}a
region where surface scattering from waves and jagged ice-
bottom formations dramatically attenuate acoustic signals
(Klatt et al. 2007). Additionally, logistical and operational re-
alities make acoustic sound sources difficult and expensive to
deploy. Consequently, the acoustic data records recovered in
these regions may be noisy or incomplete; this makes tracking
difficult.

In addition to acoustic ranging, satellite positioning, dynam-
ical knowledge of the circulation, and past float velocities
can also be used to constrain float trajectories. As a step be-
yond the established least squares acoustic tracking method,
ARTOA (Wooding et al. 2005; WHOI 2017), we present a
Kalman smoothing algorithm for float tracking that can
work with more fragmented acoustic data by incorporating

additional information and constraints. The Kalman
smoother presented here is an innovation over ARTOA in
that it uses simple kinematics to make predictions of the fu-
ture system state and error covariances. ARTOA assumes
persistence of the system state and does not predict error
covariances. The Kalman smoother performs this calcula-
tion in both forward and reverse time, which applies an addi-
tional constraint on the trajectories over ARTOA calculations
which are done in forward time only. Using variants of
Kalman filters for vehicle or contact tracking is not new and is
common for autonomous underwater vehicle localization
(Kimball and Rock 2011; Webster et al. 2015), but to our
knowledge, has never been applied to acoustically tracked
oceanographic floats.

The Kalman filter generates sequential predictions of a
float trajectory using kinematics (also known as the forecast).
The prediction made in the forecast is shown as the orange3 in
Fig. 2. The Kalman filter then updates this prediction with posi-
tioning data when available; this update step is also known as
the analysis and is shown as the green 3 in Fig. 2. During this
analysis, new data can be checked against the predicted position
(Fig. 2). Data that are highly improbable based on physical con-
straints and estimated uncertainties can be flagged or discarded,
reducing the ambiguity of acoustic sources that broadcast with
the same frequency. In the construction of the Kalman filter,
we perform what is called a regularization on the trajectory
solution by imposing several dynamical constraints to varying
degrees. These include restricting the maximum float dis-
placement, float velocity, and float velocity uncertainty. Float
displacement was also minimized by imposing a tendency for

FIG. 1. (top) Bathymetry (gray shading) and sound source locations (red dots) for the (a) Drake Passage and
(b) Weddell Sea. Magenta triangles indicate float deployment locations and orange lines indicate geostrophic stream-
lines at 1000 m depth contoured at 15 m2 s22 intervals (Gray and Riser 2014). (bottom) Distribution of the number of
sources heard in the acoustic record for the (c) DIMES experiment and the (d) Weddell Sea, respectively.
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the float trajectory to relax to a linearly interpolated position
between satellite positions, as shown in Wong and Riser
(2011). We implement dynamical regularization by including
a tendency term for float trajectories to follow barotropic
planetary geostrophic streamlines (LaCasce 2000; Reeve et al.

2016; Chamberlain et al. 2018; Yamazaki et al. 2020) and
geostrophic streamlines calculated from objectively mapped
Argo-based dynamic height and velocity (Gray and Riser
2014).

When a float emerges from under sea ice, it communicates
its acoustic ranging data so that the floats underice trajectory
can be estimated. The last satellite-derived position before the
float went under the ice and the first satellite position when
the float emerges from the ice are both strong constraints on
its trajectory. Using the last satellite position before the float
went under ice, and working in forward time, we can estimate
the float’s trajectory with available acoustic ranging. The for-
ward prediction is shown as the orange 3 along the light blue
track in Fig. 2. Similarly, a different estimate of the float’s tra-
jectory is produced using the first satellite position after the
float emerged from the ice and working backward in time. The
reverse time estimate is shown as the orange 3 along the dark
blue track in Fig. 2. A Kalman smoother combines these for-
ward and reverse time trajectory estimates to create an error-
minimized estimate of position (green3 in Fig. 2).

Here we present a new method based on Kalman smooth-
ing that extends the useful data, allowing consistent acoustic
float tracking when acoustic signals are of lower quality, and
incorporating surface GPS positioning when available. This
method can also incorporate additional external constraints,
such as satellite altimetry and the influence of bathymetry, on
the currents that advect the floats. In section 2, we describe
the acoustically tracked float datasets, the basics of acoustic
tracking, and the datasets used as external constraints. In
section 3, we describe the synthetic dataset used to test the

FIG. 2. Cartoon of Kalman smoother acoustic tracking scheme. Red dots represent sound source locations. Red
arcs represent lines of position from ranging data observed on the float. (a) Dashed brown contour represents f/H
field; dashed magenta contour represents geostrophic streamlines “AGVA” (Gray and Riser 2014). Yellow 3 repre-
sents previous position. Orange 3 represents the forecast. Green 3 represents the analysis all in forward time.
(b) Light blue and dark blue squares represent Kalman filter derived positions in forward and reverse time, respec-
tively. Yellow 3 symbols represents previous position in both forward and reverse time. Orange 3 symbols represent
the Kalman filter analysis in both forward and reverse time. Dashed light blue and dark blue lines represent position
updates due to smoothing routine. Green3 represents Kalman smoother position estimate.

FIG. 3. Example of acoustic tracking from float 5901718 in the
Weddell Sea. Green cross represents the most likely float position.
Magenta triangle and square represent float start and end points,
respectively. Black line represents the reconstructed float trajec-
tory. Teal ellipse represents the position uncertainty ellipse at the
95% confidence interval (1.96 standard deviations). Red dots and
lines represent locations and estimated time fronts for sound sour-
ces W1d, W2d, andW3b.
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Kalman smoother approach. In section 4, we present the
new Kalman smoother approach for locating acoustically
enabled floats. We then quantify the Kalman smoother per-
formance using the particle simulation experiments (section 5a)
and compare the Kalman smoother float track solutions to a
previously tracked (using ARTOA) set of floats deployed in
the Drake Passage during the DIMES experiment (Gille et al.
2007; Balwada et al. 2016) (section 5b). Finally, with insight
gained from this, solutions are presented for a previously un-
tracked set of acoustically enabled Argo floats deployed in the
Weddell Sea (section 5c).

2. Data

For the application and testing of our Kalman smoother
method for tracking acoustic floats, we use two separate
acoustic float datasets from the Southern Ocean and a numer-
ical simulation of acoustically tracked floats (next section).
One of the acoustic datasets is derived from acoustically en-
abled Argo floats, so we first describe Argo profiling floats
and then the acoustic tracking. Finally, we describe the
DIMES and Weddell Sea experiment floats and ancillary
datasets.

a. Core Argo

Argo profiling floats now comprise a global sustained ob-
serving system of about 4000 floats (Roemmich et al. 2019),
and are the most widely used deep-ocean floats. Argo floats
drift at about 1000 m and then profile from 2000 m to the sea
surface. Satellites are used to track Argo floats when they sur-
face (only a few experiments have used acoustically enabled
Argo floats). Argo floats attempt to surface when they profile
nominally every 10 days. However, Argo floats in sea ice re-
gions, such as the Weddell Sea floats presented here, may not
be able to surface when they profile, and the observations
they collect while underice will not have a satellite-derived
position. These underice profiles are commonly assigned a po-
sition based on a linear interpolation between the satellite-
derived positions at the beginning and end of the sea ice sea-
son; the resulting position errors under the ice can reach
100–200 km (Chamberlain et al. 2018; Yamazaki et al. 2020).
While Argo float observations are motivated mainly by tem-
perature, salinity, and other properties measured during the
vertical profiling (Roemmich et al. 2019), the 10-day positions
are of great value for deep ocean circulation studies (Katsumata
and Yoshinari 2010; Gray and Riser 2014; Ollitrault and Colin
de Verdière 2014).

b. Acoustically tracked floats

Floats with the modern RAFOS-type receiver (Rossby et al.
1986) are localized much more frequently than the 10-day in-
tervals of Argo profiling floats. Standard RAFOS floats are
ballasted to remain at a single drift pressure after deployment.
These floats surface only at the end of their mission to report
a final position and relay the acoustic-ranging data they have
collected throughout their mission. Daily or more frequent
positions provide information about the velocity field not rep-
resented in the 10-day positions of Argo floats. Argo profiling

floats can also be equipped with RAFOS receivers (RAFOS-
enabled Argo floats). Like Argo profiling floats, RAFOS-enabled
Argo floats provide full 2000-m temperature and salinity pro-
file every 10 days. However, they have the advantage of being
much more frequently tracked while they drift (nominally) at
1000 m than the standard Argo float.

Acoustically tracked floats require an array of sound sour-
ces, optimally at least three sources, within range of each float
tracked float; however, two acoustic ranges combined with a
prior position can typically position a float. Figure 3 shows an
example of typical acoustic ranging. Each acoustic source in
the regional arrays described here is programmed to broad-
cast at staggered times every day. As all sources broadcast the
same tone, the identity of each received transmission is deduced
by recognizing the operational limit of the broadcast range
[≈300–700 km within sea ice (Klatt et al. 2007) and 1000 km or
greater in the open ocean (Hogg and Owens 1999)] and finding
local sources in this broadcast window that could be responsi-
ble. Skilled operators do sound source identification, but sound
sources can be ambiguous and misidentifications are a funda-
mental nonlinearity in this workflow. Once the source is iden-
tified, the time of arrival (TOA) is calculated by subtracting
the time the source transmitted sound from the time the float
receives the signal.

Both float and source clocks are imperfect and drift over
time. Due to the high speed of sound in seawater compared
to the drift speed of instruments, these biases and uncertain-
ties can result in substantial positioning errors if left uncor-
rected. Float clocks may be calibrated against satellite clocks
while at the surface. During extended periods under the ice,
floats cannot recalibrate clocks, and errors can become sub-
stantial. Upon deployment and recovery, acoustic source clock
times are checked against ship-based clocks, and their offsets
are measured. If sources cannot be recovered, their final clock
offsets are unknown.

In our analysis, all measured source clock offsets were line-
arly interpolated from the time of source deployment to re-
covery; linearly interpolated sound source clock drift is then
used to correct the TOA record of any floats positioned from
a given sound source. Sound source clock linear interpolation
introduces uncertainty, which is included in the parameterized
TOA noise discussed in section 4. TOA can be transformed
to distance if the sound speed of the medium is known. We as-
sume sound signals travel along geodesics; however, refracted
sound paths in the ocean have (one or more) arc lengths that
are farther than the geodesic distance}especially in the ice-
covered ocean (Spiesecke 2018). Errors in timing translate to
errors in acoustic ranging distance; the error in the positioning
fix based on the errors in ranging distance depends on the
sound sources’ geometry. A straightforward strategy for reduc-
ing error due to increased path length is to lower the speed of
sound to account for the slower distance over ground that
bending sound paths take. Our analysis did not account for the
potential of multipath sound detections (the process through
which one sound transmission can take two or more paths to
get to a receiver and be recorded). This is a fundamental gap in
our analysis.
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c. DIMES floats

The first of two acoustically tracked datasets we examine
is from the DIMES experiment (Gille et al. 2007), in which
138 neutrally buoyant RAFOS floats were deployed west of
Drake Passage. The first floats were deployed in January 2009;
the last float surfaced in March 2012. Twelve different sound
sources tracked the floats deployed west of and within Drake
Passage (Fig. 1). In total 142 015 TOA observations were
made by the DIMES floats throughout the experiment.
DIMES trajectories were estimated from these TOAs (Balwada
et al. 2016) using the least squares ARTOA tracking method
(Wooding et al. 2005; WHOI 2017), and have been used in stud-
ies of mixing and dynamics of this region (LaCasce et al. 2014;
Balwada et al. 2016, 2021). These ARTOA-based trajectories
are deemed robust because the number and location of sound
sources were sufficient.

d. Weddell Sea floats

Our second (and primary) dataset, which prompted the de-
velopment of the Kalman smoother approach for estimating
trajectories (Chamberlain et al. 2018), is a set of 22 acousti-
cally enabled Argo floats deployed in the Weddell Sea from
February 2008 to February 2013 (Fig. 1; Table 1). During this
period, an array of 14 sound sources maintained by the Alfred
Wegener Institute was available for multiyear float tracking
(Fahrbach et al. 2011). Argo floats profile every 10 days and,
unless prevented by sea ice, surface and broadcast their data.
Argo floats also record a satellite-derived position when at
the surface. The 10-day temperature and salinity profiles were
disseminated as part of the operational global Argo dataset,
with satellite positions when the floats surfaced and linearly
interpolated positions when the floats were under sea ice.

These 22 Weddell Sea floats were acoustically enabled to
allowing tracking through the winter. However, sea ice and lo-
cal stratification degrade the acoustic range in the Weddell
Sea (Klatt et al. 2007); this degradation resulted in difficulties
with the standard ARTOAmethod for tracking the floats de-
spite the large number of sound sources. To improve the
tracking, the Kalman smoother was applied, and the result-
ing float trajectories were used in Chamberlain et al. (2018)
to estimate position uncertainty arising from the lack of sat-
ellite fixes for the 10-day Argo profiles during the sea ice sea-
son. The Weddell Sea acoustically enabled Argo float dataset
includes 13 966 TOA measurements and 1263 GPS satellite

positions. GPS position data were downloaded from the
USGODAE Argo GPS GDAC Data Browser (Argo 2019).

e. Ancillary data

For our Kalman smoother solution (section 4), we used two
dynamical constraints: a tendency to follow (i) barotropic plan-
etary geostrophic streamlines (LaCasce 2000; Reeve et al.
2016; Chamberlain et al. 2018; Yamazaki et al. 2020), and
(ii) geostrophic streamlines calculated from objectively mapped
Argo-based dynamic height and velocity (Gray and Riser
2014). The mathematical shorthand of fH21 will refer to
Barotropic planetary geostrophic streamlines, where f is
the Coriolis parameter, and H is the water depth; geostrophic
streamlines will refer to the Gray and Riser (2014) product.
We used the “ETOPO1” 1 Arc-Minute Global Relief Model
(Amante and Eakins 2009) for H in the fH21 contours. A
Gaussian filter with a standard deviation of 4 arc min was ap-
plied to the bathymetry dataset to reduce high-wavenumber
variability through convolution with a Gaussian function. This
relatively aggressive smoothing was necessary to make it possi-
ble to calculate a meaningful gradient.

3. Numerical particle tracking experiment

In addition to comparing the DIMES float trajectories calcu-
lated using the Kalman smoother with those from the ARTOA
method, we compare these tracking schemes using a series of
numerical particle tracking experiments. In the ocean, the true
trajectory of a float is unknown, but we designed artificial ex-
periments where true particle position and velocity statistics is
known. The artificial experiments quantified the relative per-
formance of the least squares, Kalman, and Kalman smoother
filters in various observational uncertainty and float motion
scenarios.

Our numerical experiments simulated float motion in the
Weddell Sea by seeding numerical particles into the ocean
and tracking them with each of the filters presented. Particles
experienced horizontal advection at a depth of 1000 m and
did not profile up and down; these numerical particles were
intended to simulate float behavior. The numerical experi-
ments used 30 000 particles to generate performance metrics
over a wide range of positioning and instrument noise scenar-
ios. Each particle had a unique trajectory and an observational
dataset with distinct observation noise and observational den-
sity. The particles all had a starting location of 648S, 23.58W
and were advected forward for 100 days in a semirandom hori-
zontal flow. A hybrid Brownian motion model was used to
simulate particle advection; a simple stochastic differential
equation estimated daily particle velocity:

V(t) 5V(t)mean 1 sW(t), (1)

where V(t)mean is a mean velocity that we chose to have the
same amplitude as the standard deviation of the Weddell Sea
Argo velocity data (7.4 km day21 zonal velocity and 5.3 km
day21 meridional velocity); W(t) is a normally distributed
random increment with an amplitude equal to the standard
deviation of the Weddell Sea Argo array velocities; and s is a

TABLE 1. WMO ID numbers of 22 previously untracked
Weddell Sea floats.

RAFOS enabled Argo floats

5901716 5901717 5901718 5901720
5901721 5901723 5901724 5901727
5901728 5901730 5901731 5901733
5901734 5901735 5901737 5901738
5901739 5901740 5901741 5901742
5901743 5901744

C HAMBER LA I N E T A L . 19JANUARY 2023

Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 03/09/23 11:25 PM UTC



scalar that is varied to test the effects of signal (mean flow) to
noise (random increment) ratio in this simple example of par-
ticle flow. We report experiments with s values of 0.1, 0.3, and
0.7, and equally divide the particles between these advection
states. Larger values of s were experimentally calculated, but
the performance of each seemed to saturate above s values of
0.7. The simulated sound source array consisted of six sources
uniformly distributed within a 600 km radius of the starting
position.

One of the goals of the numerical float experiment is to as-
sess the variables that control the position estimate errors. A
distinct TOA noise amplitude, number of sound sources heard,
and chance of satellite positioning was randomly assigned to
each of the 30000 particles upon initialization. TOA noise am-
plitude was uniformly distributed between 1 and 50 s; the num-
ber of sound sources heard was uniformly distributed between
1 and 6; and the chance of satellite positioning was uniformly
distributed between 0% and 100%.

At every time step in each particle’s trajectory, a number
of TOA observations equal to the sound source number was
generated for the particle; each TOA observation was ran-
domly assigned to be transmitted from a source within the
array with uniform distribution. The true distance from each
sound source to the particle was known, and the acoustic
travel time was calculated using this distance and a speed

of sound of 1.5 km s21. This true TOA was then degraded by
adding a normally distributed term with an amplitude equal to
the TOA noise amplitude. At every time step, these “noisy”
TOA were then used to test each filter’s performance in recon-
structing the true trajectory. In addition to acoustic tracking,
RAFOS-enabled Argo floats also receive satellite positioning;
to assess the impact of intermittent satellite observations, we
included satellite positioning with uniform probability equal to
the chance of satellite positioning at each daily time step.

4. Methods

The Kalman filter literature is ample and mature (Wunsch
2006; Rauch et al. 1965) so the following is a brief recapitula-
tion in the notation of Ide et al. (1997) and is described se-
quentially in Table 2: specifically, the subscript i denotes the
time step, boldface lowercase variables denote vectors, bold-
face sans serif uppercase letters denote matrices, and italic up-
percase letters denote nonlinear processes.

For the reader’s convenience, this section (and the associ-
ated table) is broken into the following subsections: Kalman
forward filter, Kalman smoother, regularizations, and processing
techniques. A flowchart (Fig. 4) also provides an overview
of these calculations.

TABLE 2. Sequential calculations of Kalman smoother algorithm.

Forward filter
Initialization xa(t0) � l0 with error covariance Pa(t0)
Model forecast step/predictor [Eq. (6)]

xf (ti) � Mi21x
a(ti21)

Pf (ti) � Mi21P
a(ti21)MT

i21 +Q(ti21)

Data assimilation step/corrector [Eqs. (10)–(12)] di � yoi 2 Hi · xf (ti)
K(ti) � Pf (ti)HT

i [HiP
f (ti)HT

i + Ri]21

Pa(ti) � [I 2 K(ti)Hi]Pf (ti)
xa(ti) � xf (ti) + K(ti)di(ti)

Smoother
Initialization xs(tN) � xa(tN)

Ps(TN) � Pa(TN)

Update Ks(ti) � Pa(ti)MT
i [Pf (ti+1)21]

Ps(ti) � Pa(ti) 2 Ks(ti)Ps[ti+1 2 Pf (ti+1)][Ks(ti)]T

xs(ti) � xa(ti) + Ks(ti)[xs(ti+1) 2 xf (ti+1)]

Regularizations
Max velocity uncertainty 60 km day21

Max velocity 35 km day21

Max displacement 50 km
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a. Kalman forward filter

Kalman filtering is a sequential least squares linear estima-
tor that assumes all observations have zero mean with normal
distribution. In words, the Kalman filter starts with an esti-
mate of the state of the system which we call the analysis (yel-
low box in Fig. 4), and uses a model to create a predicted
state which we call the forecast (orange box in Fig. 4), then
compares the predicted state to observations to create a new
analysis (green box in Fig. 4), and finally uses the analysis as
the initial state to create the forecast in the next time step.
This process of sequentially propagating the analysis forward
to create a forecast and then updating the forecast with new
observations can continue as long as there are new observa-
tions to assimilate. The superscripts a and f denote the analy-
sis and forecast, respectively. The superscript t denotes true
state vectors, and the superscript T denotes transposes.

We begin with the position and velocity of the previous
time step (i 2 1), which we call the true state vector xt(ti21).
The true state vector is propagated to the next time step with a
simple kinematic transition matrix with a frictional term such
that

xt(ti) 5 Mi21x
t(ti21) 1 hi21, (2)

where h is the model noise process, which is the error of the
model Mi21, which we assume to have a zero-mean normal
distribution that is stationary over time. The covariance Q of
the model noise process is written:

Q 5 E[hi21h
T
i21], (3)

where E is the expectation operator. Process noise (Q) will
generally be used to describe both process position noise and
process velocity noise. Process noise is the effect of unmod-
eled velocities and accelerations caused by forcing (such as

ocean variability) not accounted for in the simple kinematics.
The deterministic component of Eq. (2),Mi21, is written using
z for the horizontal location of the float:

x(ti) 5
z(ti)
ż(ti)

[ ]
,

z(ti) 5 z(ti21) 1 Dtż(ti21),
ż(ti) 5 aż(ti21),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where a is a frictional factor that we set to 0.95, Dt is the time
step, z is the position component of xt, and ż is the velocity
component of xt. The implementation of the Kalman filter
presented here only includes float position and velocity. Ac-
celeration is modeled as a white noise process [Eq. (2)].

We begin tracking with an estimate of the position and ve-
locity from a prior time step [the analysis or xa(ti21)] and an
estimate of the analysis error covariance from the previous
time step. The analysis error covariance is written as follows:

Pa(ti21) 5 E[{xt(ti21) 2 xa(ti21)}{xt(ti21) 2 xa(ti21)}T]: (5)

The analysis and the analysis error covariance are then pre-
dicted forward to the next time step by the kinematic model,
including process noise:

xf (ti) 5 Mi21x
a(ti21),

Pf (ti) 5 Mi21P
a(ti21)MT

i21 1 Q(ti21):
(6)

This is the forecast in Fig. 4 and is represented by the orange 3

in Fig. 2.
The next step is to use new observations to update the fore-

cast using observations. Satellite-derived positions are linear,
but other observations contain nonlinear terms in the calcula-
tion used to constrain position (e.g., magnitude of distance

FIG. 4. Flowchart describing the Kalman smoother calculation. Light blue shading represents calculations in
forward time; dark blue shading represents calculations in reverse time. Yellow boxes represent initial time steps,
orange boxes represent the forecast, and green boxes represent the analysis.
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expressed as
��������
ri · rTi

√
, where ri is the vector from source to

float position). As such, we use the extended Kalman filter
formulation of the equations. The extended Kalman filter ap-
proximates the nonlinear terms with a first-order Taylor ex-
pansion, which may lead to unstable performance if the
observation and state variables differ substantially. The line-
arized observation matrix transforms the state vector into
observation space and in the nonlinear formulation is ex-
pressed as the Jacobian H′

i 5 Hi 5 dg /dx|xf , where g is the
nonlinear functional form of the observation expressed in terms
of elements of the state vector. Specifically, the Jacobian ele-
ments for travel time are equal to

Hi 5
ri��������

ri · rTi
√

* c
, (7)

where c is the sound speed, and the Jacobian elements for
fH21 contours and geostrophic streamlines are numerically
derived. Observations are represented in the usual way as

yoi 5 Hi · xt(ti) 1 ei, (8)

where yoi is the observation, Hi · xt(ti) is the true location
transformed into observation space, and e is the observational
noise process. Unlike the model noise process, we expect the
observational noise process to change in time as we record a
varying number of observations. The observation noise process
is assumed to have a normal distribution and zero mean. We
can write the covariance of the noise process as the following:

Ri 5 E[eieTi ], (9)

where Ri is the observation noise at time step i. The difference
between this prediction from the actual observations is called
the innovation and is written as

di 5 yoi 2 Hi · xf (ti): (10)

The new observations are used to update the forecast state
(orange stars in Fig. 2) to the new analysis state by adding the
innovation multiplied by a term known as the Kalman gain K:

xa(ti) 5 xf (ti) 1 K(ti)di(ti)
K(ti) 5 Pf (ti)HT

i [HiP
f (ti)HT

i 1 Ri]21,
(11)

where xa is the analysis state and is shown as the orange 3 in
Fig. 2.

The Kalman gain is dependent on the relative magnitudes
of the observation noise and the process noise. Suppose the
observation noise is much smaller than the process noise (we
trust the observations more than the kinematic forecast). In
that case, the innovation (difference of observations from
the forecast transformed into observation space) strongly
influences the new analysis state. Alternatively, suppose the
observation noise is much greater than the process noise
(we trust the kinematic forecast more than the observa-
tions). In that case, the Kalman gain is close to zero, and the

innovation does not influence the new analysis state. The
analysis error covariance (Pa) is proportional to the forecast
error covariance (Pf) multiplied by a correction term pro-
portional to the identity matrix I minus the Kalman gain:

Pa(ti) 5 [I 2 K(ti)Hi]Pf (ti): (12)

Consider the two limits to relative observation noise covari-
ance (R) versus process noise (Q) in Eq. (12): suppose we
trust the observations more than the kinematic forecast, then
the Kalman gain (K) is relatively large and the analysis error
covariance (Pa) is less than the kinematic model forecast error
covariance (Pf) (we gained new information from the obser-
vations and reduced position and velocity uncertainty); now
suppose we trust the forecast more than the observations,
then the Kalman gain (K) is close to zero and the analysis er-
ror covariance (Pa) will be of similar magnitude to the fore-
cast error covariance (Pf) (we gained little from the new
observations and the position and velocity uncertainties remain
the same). In the special case when there are no observations,
the forecast error covariance (Pf) will be increased by the pre-
scribed process noise (Q) every time step, and the analysis error
covariance (Pa) will equal the forecast error covariance (Pf).
Because process noise (Q) is the unexpected acceleration due
to unaccounted forcing, we can think of the increasing forecast
error covariance (Pf) as the growing summation of all of the un-
known changes in the trajectory a float can take in the absence
of ranging data. Equations (11) and (12) comprise the analysis
step (Fig. 4). The analysis is then propagated forward in time
via the forecast and updated with available observations in the
analysis steps until new observations are exhausted (forward fil-
ter output in Fig. 4).

b. Kalman smoother

The Kalman filter is purely a forward calculation, meaning
that time moves in only one direction and sequential informa-
tion improves the state estimate. The forward Kalman filter is
useful in applications where operational necessity prohibits
collecting all observations before estimating the state, e.g.,
landing an airplane or tracking a missile. Floats cannot com-
municate with satellites while under ice, meaning that all
acoustic ranging and depth data are communicated only after
a float reaches open water or sea ice melts. As we will show,
having all the observations available allows an additional con-
straint on the solution that reduces position error. The impact
of these complete data is maximized here by using a variant
of the Kalman filter called the Kalman smoother. Our appli-
cation of the Kalman smoother estimates float tracks by creat-
ing trajectory estimates in both forward and reverse time,
then combining the two in such a way as to minimize uncer-
tainty (Fig. 2). Beginning with the analysis at the final time
step of the forward Kalman filter, we have

xs(tN) 5 xa(tN)
Ps(TN) 5 Pa(TN)

, (13)

where xs(tN) and Ps(tN) are the smoothed estimates of the
state vector and covariance matrix, respectively. Reproducing
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the error minimizing sequential calculation as the previous
section, but in reverse time, leads to the following equations:

Ks(ti) 5 Pa(ti)MT
i [Pf (ti11)]21

Ps(ti) 5 Pa(ti) 2 Ks(ti)[Ps(ti11) 2 Pf (ti11)]Ks(ti)T

xs(ti) 5 xa(ti) 1 Ks(ti)[xs(ti11) 2 xf (ti11)]
, (14)

where Ks is the smoothed Kalman gain. xa(ti) and xf(ti11) are
orange3 symbols along the dark and light blue tracks in Fig. 2,
respectively. Equation (14) is the smoothed analysis (Fig. 4)
and shown as the green3 in Fig. 2.

c. Regularizations

To improve the stability and realism of our solution, we im-
posed several regularizations on the filter. Velocity uncertainty
is restricted to be no greater than 60 km day21, maximum ve-
locity is restricted to be no greater than 35 km day21, and the
maximum daily change in position can be no more than 50 km.
These velocity and position constraints are larger than the
fastest velocity and position displacement recorded in the
ARTOA-tracked DIMES solutions.

To improve the dynamics of the model and reduce ambigui-
ties in the filter when there is an absence of ranging data, we
imposed constraints that nudge the float to follow selected in-
terpolation schemes. Linear interpolation between known sat-
ellite positions is referred to as satellite linear interpolation
and is the simplest and first interpolation scheme suggested
for underice data (Wong and Riser 2011). The uncertainty of
this estimate has been studied (Chamberlain et al. 2018;
Yamazaki et al. 2020), yielding mean uncertainty estimates of
approximately 100 km for 6 months of position loss. The second
scheme was a tendency for the float to follow fH21 contours by
nudging the current analysis such that the value of fH21 was
equal to that of the previous time step. A third scheme similarly
nudged floats to follow geostrophic streamlines by updating the
analysis such that the current geostrophic streamline value was
equal to that of the previous time step. At each time step, these
nudging terms were added via Eq. (10).

The code includes an optional check that helps flag spurious
sound source identifications. This check compares the observed
TOA anomaly (innovation) to the forecast error covariance and
discards observations outside the 95% confidence interval of our
forecast position. Removing these unlikely TOA observations
helped mitigate sound source ambiguity (and the resultant non-
linearity of misidentification). ARTOA does not (and cannot)
perform these checks.

d. Preprocessing

Preprocessing the acoustic data to remove sound source
clock bias and drift was found to be important in reconstruct-
ing meaningful tracks. The DIMES float tracks are included
in this analysis as a reference standard and, as such, are as-
sumed to be correct. Any TOA difference between the cal-
culated TOA (using the sound source to DIMES trajectory
distance) and TOA in the acoustic record is considered TOA
misfit. Misfit is defined as

esi 5 yoi 2 Hi · xs(ti): (15)

The Kalman smoother assumes that observational data are
unbiased with a normal distribution of uncertainty; conse-
quently, the mean TOA misfit and clock drift for each float
was removed before running the Kalman smoother. TOA
misfits greater than 35 s compared with the ARTOA DIMES
trajectories were also deemed spurious and were excluded
from our reconstructed float trajectories. Typically, ARTOA
trajectories use a subset of available sound sources to produce
float trajectories. For our calculations, all available sound
source data were used. For the Weddell Sea floats, some satel-
lite observations are available; we calculated a set of TOA
based on the distance from the satellite-derived float position
to the sources. We assume the difference between measured
TOA and calculated TOA is caused by two sources of uncer-
tainty: drift in the sound source clock and the regionally vari-
able speed of sound. To correct these errors, a multiple linear
regression was used to solve for optimal sound source clock
drift and optimal sound speed. The multiple linear regression
simultaneously calculated a sound source clock drift to mini-
mize TOA misfit as a function of time since sound source de-
ployment and a sound speed to minimize TOA misfit as a
function of distance from float to sound source. The optimal
correction to sound speed and clock drift was then used for all
trajectory solutions.

e. Tuning experiment

One subtlety of our estimates is that they use the pre-
scribed noise of various synthetic (fH21 contours, geo-
strophic streamlines, satellite linear interpolation) and real
(acoustic ranging, satellite positioning) observations as well
as process noise to generate the final trajectory. The process
noise and observation noise are variables Q and R in Eqs. (6)
and (11), respectively. When the observations do not fully con-
strain the trajectory solution, the final trajectories can be sensi-
tive to these choices.

To explore sensitivities to these prescribed uncertainties,
we conducted an experiment that varied these parameters in
what we considered to be extra small, small, medium, and
large ranges. We explored the sensitivity of process position
noise and process velocity noise in the Q matrix [Eq. (6)] and
sensitivity to geostrophic streamline noise, fH21 noise, and
satellite linear interpolation noise (when GPS positions were
available) in the observation noise [R of Eq. (11)]. Conse-
quently, the total number of calculated runs scales as the fifth
and sixth power (for DIMES and the Weddell Sea, respec-
tively) of the number of values considered for each filter pa-
rameter. This is a computational burden.

Medium values were chosen to be either the variance of the
observational dataset, or a dynamically reasonable value: spe-
cifically, 3 km for process position noise, 3 km day21 for pro-
cess velocity noise, 2.1 3 1027 rad m21s21 for fH21 contour
noise, and 20.0 m2 s21 for geostrophic streamline noise. The
DIMES and Weddell Sea experiments (for which no trajectory
solution has been published) used the same medium values.
The Weddell Sea dataset also includes infrequent satellite
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positions, which vary by season and location within the gyre
(Chamberlain et al. 2018). The medium noise value for satel-
lite linear interpolation was 120 km. Extra small and small val-
ues were 25% and 50% of the medium value, respectively.
Large values were 150% of the medium value.

Acoustic data misfit will be sensitive to the prescribed
TOA noise. Because of this dependence, trajectory solu-
tions were calculated for seven TOA noise conditions rang-
ing from 2 to 24 s. The medium TOA noise value is defined
as 8 s. Table 3 records all noise values used in these tuning
experiments.

The data misfit [Eq. (15)] is sensitive to the values of process
noise [Q in Eq. (6)] and observation noise [R in Eq. (11)]. The
ideal filter tuning will have prescribed noise equal to the true
uncertainty of the available positioning data and kinematic
model skill. Adjusting the relative confidence in the forecast or
the data may achieve lower TOA misfit (going to the limit of
least squares when there is no confidence in either). However,
it may not reproduce the true trajectories with fidelity. Reduc-
ing the prescribed TOA noise will cause the filter to more
closely match TOA observations but may produce an overfit
solution that adjusts too rapidly to noisy data. Conversely, too

little confidence in the TOA data will result in an underfit so-
lution that does not appropriately respond to real changes in
the true float trajectory. To address these competing concerns,
we introduce the following cost function (Ide et al. 1997; Parker
1994):

J 5
∑n
i50

(esi )TR21
0 esi 1

∑n
i50

[xs(ti) 2 xf (ti)]TP21
0 [xs(ti) 2 xf (ti)],

(16)

where P0 is an approximate background process noise covari-
ance based on the medium values of position process noise
and velocity process noise, and R0 is the observation noise co-
variance constructed from the medium TOA noise. The first
term in Eq. (16) is a penalty on misfit between the data and
the trajectory estimate and is called the data misfit. This
term penalizes solutions that do not adequately adapt to
data. The second term represents a penalty for smoothed
solutions that update the forecast by a large amount relative
to the prescribed process noise and is called the model
norm. This term penalizes overfit solutions that may over-
compensate the final trajectory based on noisy data. We

TABLE 3. Uncertainties considered for sensitivity experiments.

Parameter
XS

(M/4)
S

(M/2) M
L

(1.5 3 M)
XL

(2 3 M)
XXL

(2.5 3 M)
XXXL
(3 3 M)

TOA (s) 2 4 8 12 16 20 24
Process position (km) 0.75 1.5 3 4.5
Process velocity (km day21) 0.75 1.5 3 4.5
Satellite linear interpolation (km) 120
Geostrophic streamline (m2 s21) 0.6 3 1027 1.1 3 1027 2.1 3 1027 3.2 3 1027

fH21 contour (rad m21 s21) 5 10 20 30

FIG. 5. Example trajectory reconstruction of particle release experiment. The true particle
trajectory is represented by yellow diamonds with trajectories estimated from least squares
(blue diamonds), Kalman filter (light red diamonds), and Kalman smoother (green diamonds).
Red circles represent sound source locations.
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wish to minimize model norm and data misfit simultaneously.
Only idealized multiparameter optimization problems have a
single cost minimum, and the choice of metric that relates the
model norm to the data misfit is a fundamental assumption.
Thus we explore J by calculating many different solutions over
the range of parameter values shown in Table 3. The curve de-
fined by the lower bound of the calculated J in model norm–

data misfit space is known as the Pareto frontier (Jahan et al.
2016). We choose to weight model norm and data misfit
equally, and, consequently, the minimum of the second de-
rivative of the Pareto frontier defines the location of the
optimal solution.

In our calculations, we assume that satellite positioning un-
certainty is well studied and comparably very accurate to all
other forms of positioning discussed. These calculations used
a satellite position uncertainty of 0.1 km, and considered no
other values for satellite position uncertainty. We did not ex-
plore the parameter space of the numerical particle experi-
ment because the true particle velocities and the uncertainty
of the observations were previously known.

5. Results

We tested our method in three different scenarios:

1) We performed a numerical experiment with many exam-
ples of satellite positioning frequency and acoustic ranging
data density and quality. These data tested the ability of
the least squares (a method used by ARTOA), Kalman
filter, and Kalman smoother algorithms to reconstruct the
true trajectories.

2) We compared the Kalman smoother’s performance against
an ARTOA-tracked float dataset used in the DIMES
experiment.

3) The Kalman smoother generated 22 trajectories for previ-
ously untracked floats in the Weddell Sea.

a. Particle release experiment

To generate additional confidence in the Kalman smoother
and Kalman filter, and to compare their performance to other
methods, we simulated the tracking of many numerically

FIG. 6. Trajectory error for numerical simulation for Kalman smoother (green circle), Kalman filter (orange3), and least squares (blue
squares) algorithm for varying percentage of GPS positioning. The s value [Eq. (1)] is equal to (a) 10%}high signal-to-noise case;
(b) 30%}medium signal-to-noise case; and (c) 70% of mean flow–low signal-to-noise case.
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generated particles seeded in the Weddell Sea (Fig. 5). All
three filters considered in this analysis tracked particles. Simu-
lated observations explored the observational parameter
space by varying the number of satellite-derived positions
available, the amount of acoustic tracking error, and the num-
ber of sound sources heard. The motion of the numerically
generated particles was calculated with a simple stochastic
differential equation [Eq. (1)], which decomposed the mo-
tion into a mean velocity component and a scaled normally
distributed random component with amplitude propor-
tional to the mean velocity. The skill of both the Kalman
filter and the Kalman smoother is related to the predictive
skill of the kinematics used to create the forecast [M in
Eq. (6)]. The least squares filter as formulated uses persis-
tence as the kinematic model [i.e., z(ti) 5 z(ti21) and
ż(ti)5 ż(ti21)] for the forecast. Although this is mathematically
a least squares solution, it only approximates the routine used
by ARTOA. ARTOA includes a variety of other corrections

that were not included in this calculation; however, we assume
that this approximation is similar enough to be considered the
null hypothesis for our tracking filter intercomparison.

One of the hypotheses of this particle release experiment
was that the performance of the Kalman filter and Kalman
smoother would degrade relative to the least squares filter as
the motion of the particles became more random. This is be-
cause increasingly random particles reduce the kinematic
model’s predictive skill [M in Eq. (6)] compared to persis-
tence. Eventually, as the kinetic model loses all skill, the per-
formance of the Kalman filter and Kalman smoother should
converge to the least squares solution. Additionally, because
our formulation of the least squares solution makes no fore-
cast, we expect the least squares trajectory error to be insen-
sitive to the character of the float motion. To assess this, we
varied the scaling of the random component of motion [s in
Eq. (1)], which is the ratio of mean to random advection in
low, medium, and high signal-to-noise scenarios. For our

FIG. 7. Trajectory error for numerical simulation for Kalman smoother (green circle), Kalman filter (orange circle), and least squares
(blue circle) algorithm for varying quality of acoustic positioning. Solid lines represent linear fit of available data. The s value [Eq. (1)] is
equal to (a) 10%}high signal-to-noise case; (b) 30%}medium signal-to-noise case; and (c) 70% of mean flow–low signal-to-noise case.
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simulations, the total amplitude of the low, medium, and high
cases was 5.1, 2.2, and 0.7 km day21, respectively.

Process noise [Q in Eq. (6)] is kinematic model uncertainty
or unexpected acceleration. For these experiments, Q is de-
fined by the random component of motion [s in Eq. (1)] and
was set accordingly. These experiments test the relative response
of the tracking filters to the random component of motion; the
schemes nudging tracked floats to follow satellite linear interpo-
lation, fH21 contours, and geostrophic streamlines distort these
results and are turned off for all particle runs.

The first observational variable considered is the availability
of satellite positioning. Satellite positioning was varied from 0%
to 100% of the days each particle was tracked (Fig. 6) for the
three signal-to-noise cases considered. As expected, mean tra-
jectory error decreases with increased satellite positioning fre-
quency for all filters. The mean error of the Kalman smoother
outperformed the mean error of the Kalman filter and the least
squares filter for all satellite positioning and signal-to-noise
cases considered. We also find that the relative performance of
the Kalman smoother decreased as particle advection signal-to-
noise decreased. These results agree with our hypothesis that
the decreased signal-to-noise of the float advection will decrease
the skill of the kinematics used in the forecast step of the
Kalman smoother and Kalman filter. Consequently, their rela-
tive performance will approach that of the least squares filter.

Particle tracks were estimated with a range of acoustic noise
to test the sensitivity of the filters to TOA uncertainty. TOA
uncertainty is included in our calculation as observation noise
[R in the Kalman gain of the forecast update step of Eq. (11)].
TOA uncertainty was varied between 0 and 50 s for all three
signal-to-noise cases considered. Mean trajectory error increased
with increased simulated TOA uncertainty. The mean error pro-
duced by the Kalman smoother outperforms the mean error
produced by the Kalman filter and least squares for all val-
ues of TOA uncertainty and random float advection consid-
ered (Fig. 7). Linear fits of aggregated position errors show
that the Kalman smoother not only outperforms the other
filters at all three signal-to-noise levels but that the Kalman
smoother’s performance increases with increasingly noisy TOA
observations. However, the least squares solution was insensitive
to the signal-to-noise ratios. As the signal-to-noise decreased,
this outperformance of the Kalman smoother relative to the
least squares filter also decreased.

Finally, we considered the number of acoustic sources
heard (Fig. 8). Increasing the number of sound sources heard
increases the length of yoi in Eq. (10) and, if unbiased, should
improve tracking. Mean trajectory error decreased with in-
creasing numbers of acoustic sources, and the mean trajec-
tory error of the Kalman smoother was lower than both the
Kalman filter and the least squares filter. The relative mean
trajectory error of the Kalman smoother compared to the
Kalman filter also decreased with increasing sound sources
heard. This means that the relative performance increase of
the Kalman smoother is most pronounced when the most
positioning information is available. Mean trajectory error
was inversely proportional to the number of sound sources
heard for the Kalman filter and Kalman smoother, but ini-
tially increased for the least squares filter. This may be due

to the fundamental ambiguity of tracking with less than three
sources, or because the least squares filter has no forecast, its
solutions can easily fall victim to noisy TOA data.

b. DIMES intercomparison

After our synthetic experiment, we apply the Kalman
smoother to real float data, calibrate our filter to optimal cost,
and compare our trajectories to ARTOA-derived tracks.
DIMES float trajectories were reconstructed with the Kalman
smoother and compared with the previously calculated ARTOA
trajectories (Balwada et al. 2016) following the preprocess-
ing conventions described in section 4d. As in the DIMES
ARTOA tracking, a sound speed of 1.5 km s21 was used in
all calculations.

The output of the Kalman smoother depends on prescribed
errors and uncertainties; to assess these sensitivities we con-
ducted a tuning experiment to find the ideal combination of
data misfit and model size [Eq. (16)]. The optimal parameters
for the DIMES experiment as defined in section 4e are 4.5 km
for process position noise (large case), 0.75 km day21 for pro-
cess velocity noise (extra small case), 1.4 3 1027 rad m21s21

for fH21 contour noise (large case), 5.0 m2 s21 geostrophic
streamline noise (extra small case), and 2 s TOA noise (extra
small case) (Fig. 9). This parameter configuration places rela-
tive importance on following geostrophic streamlines, TOA
observations, and the velocity forecast, and relatively less im-
portance on fH21 contours and the position forecast.

We observe that the mean misfits are relatively insensi-
tive to process velocity noise and stream noise and that
the misfit distributions are non-Gaussian, underscoring the

FIG. 8. Trajectory error for numerical simulation for Kalman
smoother (green diamond), Kalman filter (orange diamond), and
least squares (blue diamond) algorithm for varying quantity of
acoustic positioning. Large solid diamonds represent the mean
value of each distribution.
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importance of properly tuning the filter to the data. Mean
misfit appears primarily sensitive to fH21 contour noise.
The Hero and Shackleton fracture zones run roughly per-
pendicular to the Antarctic Circumpolar Current in this re-
gion, and this may reduce the skill of fH21 contour-following
algorithms.

A fundamental difficulty of reproducing the DIMES trajec-
tories with any filter is that the problem is underconstrained.
Over three-quarters of the available ranging data has fewer
than the 3 sound sources necessary for an unambiguous fix.
This means that two or more solutions can be equally consis-
tent with the available ranging data and yet have substantial
differences in trajectories. Figure 10 shows several example
trajectories highlighting the similarities and differences be-
tween the Kalman smoother and ARTOA trajectories. We
observe small differences in well-tracked floats (Fig. 10a), but
the general structure is consistent, and the positioning error
is relatively low. Underconstrained trajectories (Figs. 10b–d)

may have brief periods of close agreement but then diverge
for long periods. This divergence can also be seen in the in-
crease of TOA misfit as a function of days since the last acous-
tic source was heard (Fig. 11). The aggregate of the acoustic
record also shows a decrease in mean misfit as a function of
the total percentage of the trajectory where the float was acous-
tically positioned (Fig. 12). The ARTOA to Kalman smoother
trajectory difference increased an average of 3.8 km day21 for
periods without acoustic ranging.

The ARTOA float tracks achieved lower TOA misfit than
the Kalman smoother tracks (Fig. 13a). Unsurprisingly, the
ARTOA least squares algorithm produces a solution that is
more consistent with available ranging data; our algorithm im-
poses additional dynamics on the acoustic ranging. Therefore
the Kalman smoother trajectories will, in general, have greater
misfit. However, because of potential errors in the acoustic
ranging, the hypothesis is that those dynamics may help the
Kalman smoother have overall better performance at reproducing

FIG. 9. (a) Sensitivity of DIMES experiment data misfit [Eq. (16)] to changes in position process noise, velocity pro-
cess noise, fH21 contour noise, and geostrophic streamline noise at extra small (blue), small (orange), medium
(green), and large (red) values. (b) Minimum cost overall Weddell Sea tuning runs [J in Eq. (16)] while varying
k from 0 to 100. Curvature minimum of J is identified as the optimal parameter configuration.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 4028

Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 03/09/23 11:25 PM UTC



the true trajectory (as shown in section 5a). Because our
algorithm imposes limits on velocity and position change,
it may take many additional time steps for the algorithm’s
solution to converge to an error tolerance within the mean
and standard deviation of the experiment. The least squares
solutions can reposition its trajectory without bound to
achieve maximum consistency with available data. The mean
TOA misfit for the ARTOA solution was 20.3 6 13.1 s,
whereas the mean TOA misfit for the Kalman smoother tra-
jectories was24.16 35.9 s.

The TOA error as a function of sound sources heard is also
considered (Fig. 14): a hypothesis for explaining the differ-
ence between the ARTOA tracks and our algorithm’s tracks
has been that the solution becomes unconstrained without
regular positioning and, one might assume, that an increased
number of sound sources would decrease TOA misfit. These

results are more subtle than that line of thinking. We observe
the distribution of the TOA misfit between the 20th and 80th
percentiles to be between 1.0 and 7.1 s for one sound source,
increasing to between 2.5 and 7.6 s for two sound sources,
then increasing to a maximum between 4.4 and 12.2 s for
three or more sources. A float trajectory can be consistent
with one or two lines of position regardless of the uncer-
tainty in the ranging data. However, it can only be consis-
tent with three or more lines of position if the ranging data
have no bias or uncertainty. Perfect data, unfortunately, do
not occur in the ocean, and all the sources of timing error
(sound source clocks, float clocks, speed of sound esti-
mates) may be responsible for this increase in TOA error.
The ARTOA to Kalman smoother trajectory difference de-
creased an average of 13.4 km for each additional sound
source heard.

FIG. 10. Comparison of Kalman smoother (green) and ARTOA (blue) trajectories for DIMES floats (a) 808,
(b) 853, (c) 854, (d) 802. Float 808 represents a well-tracked float with relatively little difference between Kalman
smoother and ARTOA trajectories. Floats 853, 854, and 802 highlight some of the divergences that happen when the
solution is not fully constrained.
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Despite these challenges, ARTOA and Kalman smoother
trajectories showed many similarities (Fig. 13). The histogram
of the trajectory difference between the Kalman smoother
trajectories and the ARTOA trajectories peaks at 15.4 km

with a mean of 157.9 km and a median value of 44.4 km. A
comparison of the Kalman smoother and ARTOA speeds
shows a similar distribution, with a higher Kalman smoother
velocity peak and a fat tail in the faster end of the distribution

FIG. 11. TOA error for Kalman smoother tracking of the
DIMES experiment (orange circle), and Weddell Sea dataset
(blue circle) by days since last positioned. Solid lines represent the
mean of each distribution.

FIG. 13. (a) Histogram of misfit of trajectory with available acous-
tic ranging for ARTOA (blue) and Kalman smoother (green).
(b) Histogram of trajectory difference between Kalman smoother
and ARTOA trajectories. (c) Speed histogram for ARTOA trajec-
tories (blue) and Kalman smoother trajectories (green).

FIG. 14. TOA error for Kalman smoother tracking of the DIMES
experiment (orange diamond) and Weddell Sea dataset (blue dia-
mond) for the number of discrete sound sources heard. Large solid
diamonds represent the mean value of each distribution.

FIG. 12. Mean TOA error for Kalman smoother tracking of
the DIMES experiment (orange circle) and Weddell Sea dataset
(blue circle) by percentage of trajectory which was acoustically
tracked. Solid lines represent the mean of each distribution.
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(Fig. 13c). The ARTOA float speed pdf peaks at 1.4 km
day21 with a mean and median of 6.9 and 4.9 km day21, re-
spectively. The Kalman smoother pdf speed also peaks at
1.4 km day21 with a mean and median of 7.5 and 4.3 km day21.

c. Weddell Sea floats

Having validated our method with both the numerical ex-
periment and the DIMES float trajectories, we focus on the
set of previously untracked floats in the Weddell Sea (Figs. 15
and 16).

Similar to the DIMES intercomparison, the sensitivities of
the trajectory solutions were assessed to prescribed parameter
uncertainties. Intermittent satellite positioning is available in
the Weddell Sea dataset, so we also considered satellite linear
interpolation’s prescribed uncertainty. The optimal parameter
configuration for the Weddell Sea experiment (Fig. 16) as ex-
plained in section 4 are 4 s TOA uncertainty (small case), 4.5 km

for process position noise (large case), 0.75 km day21 for process
velocity noise (extra small case), 0.6 3 1027 rad m21 s21 for
fH21 contour noise (extra small case), 30.0 m2 s21 streamfunc-
tion noise (large case). TOAmisfit was found to be insensitive to
satellite linear interpolation noise at any reasonable values and
was set to 120 km. This parameter configuration puts relative im-
portance on the velocity forecast, TOA observations, and the
tendency to follow fH21 contours. We observe that data misfit is
primarily sensitive to process position noise.

Weddell Sea float trajectories and associated position un-
certainties are estimated for the first time (Fig. 15). TOA mis-
fits for the Weddell Sea dataset are generally higher than
those for the DIMES dataset (Figs. 11, 12, 14). However, the
mean Weddell Sea TOA error is much less after long periods
without positioning. This could imply that the data quality of
the Weddell Sea experiment is worse than that of DIMES but
that the skill of the nudging schemes (particularly fH21 con-
tours) is greater. This implication is reasonable because the

FIG. 15. Trajectories of 22 previously untracked Weddell Sea RAFOS-enabled Argo floats. Red dots represent an
array of 13 sound sources. Blue triangles and magenta squares represent the first and last known positions, respec-
tively. (a) Green stars and lines represent GPS positions and satellite linear interpolations as provided by the Argo
Global Data Assembly Center, which does not include acoustic tracking. (b) Kalman smoother estimate of true trajec-
tories. Track line colors represent position uncertainty.
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Weddell Sea is relatively quiescent compared to Drake Pas-
sage and likely has dynamics that are easier to model. Con-
trary to the DIMES floats, the mean Weddell Sea TOA error
continually increases while the standard deviation of TOA er-
ror continually decreases (Fig. 14): we observe the distribu-
tion of TOA misfit between the 20th and 80th percentiles to
be between 2.9 and 43.8 s for one sound source, changing to
between 3.8 and 35.0 s for two sound sources, finally increas-
ing to between 15.1 and 39.6 s for three or more sources.

Overall, TOA misfit was higher, and speed was slower than
those calculated for DIMES. Similar to the DIMES data
(Fig. 17), the residuals are non-Gaussian. Weddell Sea TOA
misfit had more bias but less standard deviation compared to
the DIMES Kalman smoother trajectories. The mean TOA
misfit for the ensemble of reconstructed trajectories was
29.0 6 14.4 s. While dynamical differences such as the mag-
nitude of mean currents and eddy activity exist between the
DIMES experiment and the Weddell Sea, the primary dif-
ference between the Weddell Sea and DIMES datasets is
that Weddell Sea floats received intermittent satellite posi-
tioning, while the DIMES floats did not. The intermittent
satellite positioning not only provides a powerful constraint

on the trajectory solutions but also helps to calibrate sound
source clock drift and moderate the potential nonlinearities
associated with sound source misidentification. It is difficult
to quantify these effects, but they may be less than the dis-
placement due to the vertically integrated ocean shear that
neutrally buoyant floats that drift at depth for long periods
have sought to avoid. The speed histogram (Fig. 17b) shows
a mean float speed of 5.4 km day21 and a median float speed
of 2.1 km day21.

6. Discussion

Our implementation of the Kalman smoother offers theo-
retical and operational benefits over the standard least squares
solutions. This formulation of Kalman smoothing is designed
to be added to updates of float tracking software packages.
Checking sound source identification was also an important
step in successfully localizing floats in the underice Weddell
Sea.

The Kalman smoother is not without weaknesses. Long peri-
ods of position loss can cause the filter to produce unphysical es-
timates that cross onto land or travel against known circulation

FIG. 16. (a) Sensitivity of Weddell Sea experiment data misfit [Eq. (16)] to changes in position process noise, veloc-
ity process noise, fH21 contour noise, and geostrophic streamline noise at extra small (blue), small (orange), medium
(green), and large (red) values. (b) Minimum cost overall Weddell Sea tuning runs [J in Eq. (16)] while varying
k from 0 to 100. Curvature minimum of J is identified as the optimal parameter configuration.
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features. The acceptable time of position loss will depend on
many factors, including the uncertainty of positioning, sound
source configuration, the complexity of the float motion, avail-
able satellite positioning, and the tendency of the float to fol-
low geostrophic streamlines. In our analysis, we have found
the purely acoustic position estimates of the Kalman smoother
after 60 days of position loss to be dubious.

The optimal DIMES and Weddell Sea trajectory solutions
have parameter configurations of position noise, velocity noise,
and dynamical constraints that imply the Kalman smoother has
skill. The ARTOA least squares solution can be approximated
by prescribing enormous process noise and nudging scheme
noise such that the filter only regards acoustic ranging; this was
not the result of the sensitivity experiments. The calculated opti-
mal noise for each dataset emphasizes inputs from specific
nudging schemes and the forecast. The low geostrophic stream-
line noise of the DIMES tuning experiment and the fH21 con-
tour noise of the Weddell Sea tuning experiment highlight the
need to include multiple nudging inputs. We have found adding
these physical constraints to be important in producing trajecto-
ries in the direction of known circulation features with reason-
able velocities. It is encouraging that the ideal Weddell Sea
float trajectory solution was more strongly affected by the
depth-following constraint. At the same time, the geostrophic
streamlines were less helpful, as Gray and Riser (2014) note
the high uncertainty in their Weddell Sea streamlines due to
the very sparse Argo data at the time of their analysis. Satellite
linear interpolation was also important in producing reason-
able trajectories, although the data misfit was observed to be
insensitive to the scaling of 120 km presented in Chamberlain
et al. (2018).

7. Conclusions

We have demonstrated a method that combines acoustic
ranging, satellite observations, and geostrophic dynamics to
constrain float tracks. Our Kalman smoother method includes
constraints to follow fH21 contours, geostrophic streamlines,
or satellite linear interpolation (when available), and it limits
maximum uncertainty in velocity and maximum allowed posi-
tion change. We have shown that this method is a possible im-
provement over least squares in an ensemble of numerical
simulations and real-world float tracking experiments with de-
graded acoustic signals.

We validated the Kalman smoother using previous DIMES
experiment acoustic ranging data and ARTOA float tracks.
We found the trajectories produced by the Kalman smoother
to be consistent with available ranging data. We also validated
the Kalman smoother using a numerical experiment in which
we released and tracked 30 000 artificial particles using simu-
lated acoustic ranging and satellite positioning. Our numerical
experiment found that the Kalman smoother was more con-
sistent with the true particle trajectories than the Kalman fil-
ter or the least squares solution.

Finally, we applied the Kalman smoother to a previously
untracked set of floats in the Weddell Sea. Weddell Sea float
tracks and acoustic ranging errors are within standard ranging
uncertainties and have been made available publicly through
the NOAA Subsurface Float Data Assembly Center. Our dy-
namical model, which assumes floats follow a combination of
fH21 contours, geostrophic streamlines, and satellite linear in-
terpolation, is still somewhat simple. Subsequent software
versions that consider known circulation features or sea sur-
face height observations may lead to improvements.

A version of Kalman filtering could be incorporated in fu-
ture software to identify sound sources; for example, while
identifying sources, forecast predictions could be generated
from previous sound source selections that inform the user of
statistically improbable source choices. In general, clock drift
introduced substantial challenges in trajectory reconstruction
because of the ocean’s relatively high speed of sound. Addi-
tionally, although sound sources are identified manually by
careful and skilled practitioners, and the Kalman smoother can
quantify the statistical probability of a sound source, mistakes in
identification are possible}particularly after a long period of
ranging loss. Sound source misidentification is a fundamental
nonlinearity in this calculation that we do not address. Other
methods (Li et al. 2015) or insonification strategies that
uniquely identify sound sources have been advanced and could
be considered in future deployments (Duda et al. 2006).

This study has focused on the Southern Ocean, but under-
ice Argo tracking is also of interest in the Arctic Ocean.
Further tests are needed to determine the applicability of
the Kalman smoother with our chosen regularizations in the
Arctic Ocean.
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