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Abstract Oceanographic conditions on the continental shelf of the Ross Sea, Antarctica, affect sea ice
production, Antarctic Bottom Water formation, mass loss from the Ross Ice Shelf, and ecosystems. Since
ship access to the Ross Sea is restricted by sea ice in winter, most upper ocean measurements have been
acquired in summer. We report the first multiyear time series of temperature and salinity throughout the
water column, obtained with autonomous profiling floats. Seven Apex floats were deployed in 2013
on the midcontinental shelf, and six Air‐Launched AutonomousMicro Observer floats were deployed in late
2016, mostly near the ice shelf front. Between profiles, most floats were parked on the seabed to minimize
lateral motion. Surface mixed layer temperatures, salinities, and depths, in winter were −1.8 °C, 34.34,
and 250–500 m, respectively. Freshwater from sea ice melt in early December formed a shallow (20 m)
surface mixed layer, which deepened to 50–80 m and usually warmed to above −0.5 °C by late January.
Upper‐ocean freshening continued throughout the summer, especially in the eastern Ross Sea and along the
ice shelf front. This freshening requires substantial lateral advection that is dominated by inflow from
melting of sea ice and ice shelves in the Amundsen Sea and by inputs from the Ross Ice Shelf. Changes in
upper‐ocean freshwater and heat content along the ice shelf front in summer affect cross‐ice front
advection, ice shelf melting, and calving processes that determine the rate of mass loss from the grounded
Antarctic Ice Sheet in this sector.

Plain Language Summary Measurements of temperature and salinity in coastal Antarctic
waters are generally restricted to summer when sea ice disappears so that ships can operate there. Moored
sensors can collect data through winter but are usually deployed below 200–300 m to minimize risk of
damage from drifting icebergs. We describe a novel approach, using autonomous profilers deployed by ship
and aircraft, to collect data from the seabed to the ocean surface throughout the year. We deployed 13
profilers in the Ross Sea, Antarctica. Most profilers were programmed to sit on the seabed between profiles to
minimize drift and to continue profiling even when ice cover prevented their ascent to the surface. As
expected, annual changes in upper‐ocean temperature and salinity were closely related to seasonal changes
in sea ice. However, the upper ocean continued to freshen even after the sea ice had all melted, suggesting
that substantial amounts of freshwater must be coming from ice melting in the adjacent Amundsen Sea.
Increasing our understanding of sources of freshwater in the Ross Sea will improve our predictions of this
region's changing role in Antarctic sea ice formation, ice loss from the Antarctic Ice Sheet, and Southern
Ocean ecosystems.

1. Introduction

The Ross Sea (Figure 1) is a major region of sea ice formation (Comiso et al., 2011) and water mass transfor-
mation (Orsi et al., 1999) and is the most biologically productive area of the Southern Ocean (Arrigo et al.,
1998); its ecological significance (Smith, Ainley, et al., 2012) is highlighted by recent designation of the
Ross Sea Marine Protected Area (CAMLR, 2016). The distribution and properties of water masses in this
region (Orsi &Wiederwohl, 2009) represent the combined response to advection onto and off the continental
shelf and ocean interactions with the atmosphere, sea ice and ice shelf, and processes summarized by Smith,
Sedwick, et al. (2012) in their Figure 3. Thermohaline circulation extends under the Ross Ice Shelf, which
covers an area of ~480,000 km2 in the southern Ross Sea. Advection of ocean heat under the ice shelf
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results in basal melting, which constitutes 25–30% of the mass loss from this cold‐water ice shelf (Depoorter
et al., 2013; Rignot et al., 2013).

Over recent decades, the Ross Sea has experienced large changes in annual‐averaged sea ice production and
transport (Comiso et al., 2011; Holland et al., 2017), the properties of deep water masses (Budillon et al.,
2011; Jacobs & Giulivi, 2010), and Antarctic Bottom Water outflows (Gordon et al., 2015). These changes
in annual averages depend on processes that vary on seasonal timescales forced by the annual cycle of atmo-
spheric state, including fluxes of heat, freshwater, and momentum. For example, production of dense High‐
Salinity Shelf Water (HSSW) in the Ross Shelf and Terra Nova Bay polynyas occurs entirely in winter (Dale
et al., 2017; Jacobs & Comiso, 1989; Rusciano et al., 2013). The seasonality of both HSSW production and
circulation of Ice Shelf Water (ISW) from under the Ross Ice Shelf contributes to seasonal variability of
Antarctic Bottom Water production near the continental shelf break (Budillon et al., 2011). Local warming
of the upper ocean near the Ross Ice Shelf front, which contributes to the observed rapid melting in the ice
shelf's frontal zone (Arzeno et al., 2014; Horgan et al., 2011; Malyarenko et al., 2019; Moholdt et al., 2014;
Stewart et al., 2019; Tinto et al., 2019), only occurs during austral summer when there is minimal sea ice.
The southward flux and hydrographic properties of the subsurface layer of modified Circumpolar Deep
Water (mCDW) near Hayes Bank also vary seasonally (Pillsbury & Jacobs, 1985). Quantifying these
processes on seasonal timescales requires acquiring data through at least a full annual cycle.

Upper‐ocean hydrography in the Ross Sea has been extensively sampled by Conductivity‐Temperature‐
Depth (CTD) profiling from ships; see Orsi and Wiederwohl (2009), their Figure 1. However, these data
are biased toward the austral summer when low sea ice concentration allows ship access. Two hydrographic
sections made across the west‐central Ross Sea in October–November 1996 and April 1997 (Gordon et al.,
2000) provide some guidance on ocean state preceding and following the open water period but do not pro-
vide data through winter. Furthermore, ship‐based CTD surveys do not provide time series of variability that
are needed to identify specific processes driving the observed hydrographic changes. Moored sensors, such as
those reported by Pillsbury and Jacobs (1985), Whitworth and Orsi (2006), and Budillon et al. (2011), provide
time series throughout the mooring deployment period, which is usually more than 1 year; however,

Figure 1. Location map of the Ross Sea continental shelf showing the trajectories of the 13 floats used in this study. Seven Apex floats deployed in 2013 are marked
in black/gray; white dotted line segments connect their last known position in a season with the first known position the following season. Six ALAMO floats
deployed in late 2016 are marked by circles with labeled blue dotted trajectories. LAB = Little America Basin; HaB = Hayes Bank; HoB = Houtz Bank;
GCT=Glomar Challenger Trough; TNB= Terra Nova Bay. Bathymetry is fromRTOPO2 (Schaffer et al., 2016), with 500‐m isobath highlighted in blue. Background
is from theMODISMosaic of Antarctica (Scambos et al., 2007). Gray contours over open water aremean annual sea ice‐free days (concentration <25%) from Special
Sensor Microwave Imager. The western, central, and eastern regions are separated by the bold black lines.
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moorings are typically been deployed below 200‐ to 300‐m depth to avoid possible damage by drifting ice-
bergs. These temporal and depth restrictions on data availability lead to aliasing in annual mean gridded
hydrographic products such as the World Ocean Atlas (Locarnini et al., 2013) and the Orsi and
Wiederwohl (2009) data set for the Ross Sea. The resulting biases complicate assessment of climate model
performance (e.g., Little & Urban, 2016), the use of these fields as drivers for ice sheet models (e.g.,
DeConto & Pollard, 2016; Joughin et al., 2014), and the accuracy of long‐term hydrographic trends
(Schmidtko et al., 2014).

Some progress has recently been made in extending upper‐ocean measurements into the nonsummer periods.
Deployments of CTD satellite relay data loggers (CTD‐SRDLs) on seals (e.g., Charrassin et al., 2008; Padman
et al., 2012; Roquet et al., 2013) have provided data from under sea ice in some regions since 2004. Piñones
et al. (2019) used CTD‐SRDL data collected in 2010‐2012 in the southwest Ross Sea to describe the spatially‐
averaged seasonal cycle of upper ocean hydrography near Ross Island. However, these sensors are of much
lower accuracy than those on ship CTD systems, and the sampling distribution is determined by the seals'
foraging behavior. Ice‐tethered profilers, routinely used in the Arctic (e.g., Cole et al., 2014), have been
deployed for short periods in the Antarctic (Ackley et al., 2015) but cannot sample a complete annual cycle
because sea ice disappears frommost regions each summer, either bymelting or advection. Amore promising
approach to obtaining high‐quality upper‐ocean hydrographic data continuously for long periods involves the
use of autonomous profiling floats, such as the Apex floats used in the Argo program (Riser et al., 2016;
Roemmich et al., 2009). Apex floats can make repetitive dives from the surface to 2,000 m and can be pro-
grammed to continue to profile while avoiding contact with sea ice (Klatt et al., 2007; Silvano et al., 2019;
Wong & Riser, 2011). Pellichero et al. (2017) combined vessel CTD profiles (1906–2012), Argo float data
(2002–2014), and CTD‐SRDL data from marine mammals (2004–2014) to map seasonal variability of the
Southern Ocean mixed layer. However, the lack of well‐resolved time series limits the use of these data for
assessing specific processes such as intermittent advection and response to large atmospheric forcing events.

Here, we report new observations of the temporal variability of hydrography over the southern Ross Sea con-
tinental shelf (Figure 1) from the seabed to the ocean surface during the period December 2013 to March
2017, obtained with profiling floats deployed by ship and aircraft (section 2). We use these data to describe
the seasonal and interannual variability of upper‐ocean hydrography of the southern Ross Sea (section 3)
and estimate the heat and freshwater exchanges between the ocean, atmosphere, sea ice, and ice shelf, focus-
ing on the transition from late winter to summer and into early autumn (section 4). These measurements
and analyses provide insights into the processes that will determine future changes in the Ross Sea and
Ross Ice Shelf and ice loss from the adjacent grounded portions of the Antarctic Ice Sheet (Tinto et al., 2019).

2. Data and Methods
2.1. Autonomous Profiling Floats

Two independent sets of autonomous profiling floats acquired data over a broad region of the continental
shelf in the Ross Sea (Figure 1 and supporting information Table S1). In December 2013, eight Apex floats
were deployed from the U. S. icebreaker Nathaniel B. Palmer, cruise NPB‐1310, along a line roughly
100–150 km north of the Ross Ice Shelf front. One Apex float failed during the first summer and was not used
in this study; the other seven floats were still operating in March 2017, the last data used in this study (see
below). In total, 1,156 Apex profiles were obtained by these seven floats during these ~3.25 years. In 2016,
we air‐launched six Air‐Launched Autonomous Micro Observer (ALAMO) A1‐XB profilers from a New
York Air National Guard LC‐130 aircraft operating from McMurdo Station on Ross Island, as part of the
ROSETTA‐Ice project (Tinto et al., 2019). One float was deployed on 30 November 2016 into open water near
Ross Island. On 8–9 December 2016, five more floats were deployed, four into regions of open water and one
into a lead in the sea ice. One of these floats was launched ~60 kmwest of Cape Colbeck, while the other four
were launched 35–65 km from the Ross Ice Shelf front. The six ALAMO floats made a total of 231 dives. Three
ALAMO floats survived the summer season, last reporting as sea ice began to grow in early March 2017.

All floats carried SeaBird SBE41 sensors to measure conductivity (C), temperature (T), and pressure (P).
Profiles of practical salinity (SP), potential temperature (θ), potential density (σθ), and depth (z) were derived
from these measurements (Argo, 2000). The time interval between vertical profiles for the Apex floats was
nominally 7 days, and data were averaged to 2‐decibar (dbar) intervals. Five of the six ALAMO floats
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profiled near daily, while ALAMO 10099 profiled every 4 days. The vertical sampling interval for the
ALAMO floats was initially set to 10‐ and 50‐dbar spacing above and below 250 dbar, respectively. After
confirming standard operation and sufficient bandwidth for data transfers, the floats were reprogrammed
to sample at 2‐dbar intervals from the seabed to the surface. During parking intervals, C, T, and P were
recorded every 60 and 15 min for Apex and ALAMO floats, respectively.

When a float surfaced, its position, engineering, and hydrographic data were telemetered via the Iridium
satellite network. If a float were to attempt to surface when sea ice was present, the sensors and antennas
would likely be damaged. To reduce this risk, each float implemented “sea ice avoidance” logic (Klatt
et al., 2007; Wong & Riser, 2011) to predict the presence of sea ice from T and Sp properties measured during
ascent within the depth range of 20–40 m. If specified criteria were met, the float halted its ascent, descended
to its parking depth, and retried the profile plan after 1 to 10 days. The float stored data to transmit during the
next successful surfacing (Table 1). We used linear interpolation to estimate positions for profiles that were
acquired while under sea ice (Figure 1).

In the conventional mode of operation, autonomous floats are programmed to drift near a preselected pres-
sure when not profiling; most floats in the deep‐ocean Argo network are “parked” near 2,000 dbar (Riser
et al., 2016). The average displacement between telemetered positions then provides an estimate of mean
velocity at the parking depth. Only two of our floats operated in this mode. On 19 December 2016,
ALAMO 10100 was reprogrammed to a parking depth of 300 dbar in water deeper than 500 m. This float
then drifted along a serpentine path at rates of up to 20 km/day within the Little America Basin in the east-
ern Ross Sea (Figures 1 and S1). The short‐lived ALAMO 10101 (Table 1), deployed in the Bay of Whales,
experienced similar daily displacements at its parking depth of ~150 dbar. For all other floats, the parking
depth was set to be greater than the deepest expected seabed depth in the deployment region, ensuring that
the float was sitting on the seabed while not actively profiling. For this “bottom‐parking”mode of operation,
we assumed that floats do not move laterally while on the seabed. This assumption is supported by time
series of pressure during bottom parking, where the records are consistent with tidal variations in sea surface
height but do not contain the nontidal variability that would be expected if the floats were moving across a
sloping or rough seabed. Therefore, we attributed all displacements between consecutive surface position
fixes to drift during the combined 3‐5 hr that the profiler was off the seabed. This time includes
communicating at the surface (~1 hr), descending to the seabed (~1 hr), and the following upward profiling
(~1–2 hr) after the bottom‐parking period.

Table 1
List of All Floats Used in This Study; Seven Apex Floats (2013–2017) and Six ALAMO Floats (2016–2017)

Float Region

2013/2014 2014/2015 2015/2016 2016/2017

First Last First Last First Last First Last

Apex
5904152 Eastern 21 Deca 14 Feb 27 Nov 11 Mar 19 Dec 19 Feb 18 Dec 25 Feb
5904150 Eastern 21 Deca 28 Feb 28 Dec 07 Mar 21 Dec 29 Feb 19 Dec 12 Mar
5904166 Central 21 Deca 28 Feb 03 Jan 07 Mar 21 Dec 28 Feb 12 Dec 13 Mar
5904168 Central 21 Deca 28 Feb 10 Jan 07 Mar 21 Dec 28 Feb 13 Dec 13 Mar
5904163 Central 21 Deca 07 Jan 11 Jan 08 Mar 22 Dec 29 Feb 06 Dec 13 Mar
5904167 Central 21 Deca 15 Jan 18 Jan 07 Mar 22 Dec 22 Feb 21 Nov 20 Mar
5904165 Central 21 Deca 21 Jan 07 Jan 03 Mar 25 Dec 26 Feb 27 Nov 19 Mar
ALAMO
10098 Western 30 Nova 12 Dec
10099 Central 13 Deca 27 Feb
10100b Eastern 10 Deca 06 Mar
10101c Eastern 10 Deca 19 Dec
10102 Central 10 Deca 05 Mar
10103 Central 10 Deca 14 Jand

Note. Regions are defined in Figure 1. Parking depths were deeper than the seabed except where indicated. Dates of first and last communications in summer sea
ice free periods are given. ALAMO = Air‐Launched Autonomous Micro Observer.
aDate of first profile. bALAMO 10100 was reprogrammed to park at 300 dbar on 19 December 2017. cALAMO 10101 was parked at 150 dbar.
dCommunications ceased for unknown reason.
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In March 2017, the seven Apex floats were reprogrammed to drift with the ocean circulation. Since this
meant that they could then drift long distances beneath the ice without providing position information,
we did not use data after this date.

The interprofile displacements (Δx) for bottom‐parked floats ranged from a few hundred meters to a few
kilometers (Figure S1), compared with typical values of Δx of several kilometers for free drifting
ALAMOs. Since the floats ascend and descend at a nearly uniform rate, horizontal displacements for
bottom‐parked floats can be interpreted as estimates of depth‐averaged velocity for the time periods while
the float is off the seabed between consecutive surface positions. The distribution of depth‐averaged water
speeds (about 0–0.2 m/s; Figure S1) estimated in this manner for bottom‐parked ALAMO floats was gener-
ally consistent with speeds for the free drifting ALAMOs and measurements by current meters on moorings
on and near Hayes Bank close to the ice shelf front (Pillsbury & Jacobs, 1985).

During its free drifting phase, ALAMO 10100 passed close to the bottom‐parked Apex 5904152 in late
January 2017 (about 3 years after Apex deployments), allowing for a direct comparison of their measure-
ments. Two approximately concurrent and collocated profile pairs indicate good agreement between the
temperature and salinity recorded by the floats (Figure S2). The largest differences were in the surface mixed
layer (SML), where interfloat differences in both T and SP were comparable to the daily variability measured
by ALAMO 10100. The thin, warm layer near 150–200 m, just below the upper pycnocline, was slightly war-
mer in both ALAMO profiles than in the Apex. ALAMO 10100 observed a 50‐m‐thick warm and salty layer
near 400 m, whereas Apex T and SP profiles were nearly uniform through that depth range. Below this layer,
from ~480 m down to the seafloor, the mean differences between the nearest Apex and ALAMO T and SP
profiles were less than 0.0014 °C and 0.0022, respectively. These small differences give us confidence that
the sensor drift on Apex 5904152, 3 years after deployment, was negligible. For temperature, this is
supported by values of minimum upper‐ocean temperatures recorded every winter during active sea
ice formation.

2.2. Satellite Observations of Sea Ice Concentration

We used daily sea ice concentration, (Cice), derived from Special Sensor Microwave Imager multichannel
passive microwave imagery (Tschudi et al., 2016) and averaged to a polar stereographic grid in 25 × 25‐km
cells, to determine sea ice cover above each float. These data were processed with the NASA Team algorithm
(Markus & Cavalieri, 2000).

2.3. Upper‐Ocean Heat and Freshwater Budgets

Upper‐ocean heat and freshwater contents (OHC in gigajoules per square meter [GJ/m2] and OFWC in
meter, respectively) are the depth‐integrated ocean responses to net heat and freshwater fluxes at the
surface, vertical fluxes from the underlying ocean, and horizontal advection and mixing.
2.3.1. Upper‐Ocean Heat and Freshwater Content
We defined OHC as the vertically integrated heat anomaly relative to the surface freezing temperature (e.g.,
Martinson & McKee, 2012)

OHC ¼ ∫
0

−Hint
ρ0 cp θ−Tf 0

� �
dz; (1)

whereHint is a fixed depth in meters below sea level, ρ0 is a constant ocean density equal to 1027.7 kg/m3, cp
is the heat capacity of seawater (taken as a constant 3,850 J·kg−1·C−1), and Tf0 is the surface freezing tem-
perature of seawater with a reference salinity Sp0 (chosen to be 34.55, the maximum surface salinity reported
by any float). The time tendency, d (OHC)/dt, is balanced by fluxes across the top and bottom of the layer and
horizontal advection

∂ OHCð Þ
∂t

¼ Qsfc−Qz¼−Hint
−ρ0cp∫

0

−Hint
∇H · vθð Þdz: (2)

In equation (2), Qsfc (W/m2) is the net heat flux to the ocean from the surface (atmosphere, plus ice when
present), and Qz¼−Hint

is the vertical flux at the lower integration depth limit. This flux is the sum of vertical
advection (upwelling) and diffusion. The last term in equation (2) is the vertically integrated horizontal heat
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flux divergence, where v are the horizontal components of current velocity and∇H is the horizontal gradient
operator, and includes advection of mean gradients by mean currents and eddy heat transports.

The vertical heat flux at the lower integration depth limit, Qz¼−Hint
, is given by

Qz¼−Hint
¼ ρ0 cp θ−Tf 0

� �
−Hint

wEk þ ρ0 cpKz
∂θ
∂z

; (3)

In equation (3), wEk= ∇ × (τ/ρ0f) is the Ekman upwelling rate, where f is the Coriolis parameter and τ is the
surface wind stress. Note that we do not include effects of a sea ice cover on the transmission of wind stress to
the ocean since the focus of this paper is primarily on sea ice free periods. Kim et al. (2017) provide more
information of the effects of sea ice on upwelling driven by wind stress curl. We estimated the diffusion term
from vertical eddy diffusivity, Kz, which may be provided by a turbulence closure model or using typical
ocean values of 10−6 to 10−4 m2/s (see, e.g., Ledwell et al., 1993; Smith & Klinck, 2002).

Similarly, we calculate OFWC (e.g., Condron et al., 2009) as

OFWC ¼ ∫
0

−Hint
1−

Sp zð Þ
Sp0

� �
dz: (4)

Changes in OFWC obey a conservation equation similar in form to equation (2).
2.3.2. Atmospheric Fluxes From the ERA‐Interim Reanalysis
We obtained estimates of surface heat, freshwater, and momentum fluxes from ERA‐Interim, a global
atmospheric reanalysis that solves for the best fit between observations and dynamical constraints (Dee
et al., 2011). Output was obtained on a 0.75° grid (~17 × 83 km near the ice shelf front) at 3‐hr intervals.
Ocean points in ERA‐Interim may be open water or covered by some fraction of sea ice, obtained from
satellite measurements of Cice (section 2.2). Surface fluxes, which are calculated in the atmospheric
boundary layer, are partitioned by the fraction of the surface covered by sea ice and liquid ocean surface.
The net atmospheric heat flux, QATM, is given by the sum of several components: QATM = QSW+QLW+QH

+QE, where QSW and QLW are the net shortwave and longwave radiative fluxes and QH and QE are the
sensible and latent turbulent heat fluxes. All fluxes are defined as positive downward (i.e., heat gain by
the ocean). The local atmospheric surface freshwater flux is given by FWATM = (P − E), where P (positive
down) and E (positive up) are precipitation and evaporation rates, respectively. Over the ocean close to
the ice front, there may be an additional freshwater flux when snow that falls on the northern ice shelf
is blown into the ocean by the prevailing southerly winds (Knuth et al., 2010); however, this term is
not provided by ERA‐Interim.

3. Results
3.1. Float Locations and Drift

Uncertainties in profile locations acquired while under sea ice arise from the linear interpolation of float
drift between consecutive surface fixes (Figure 1). We reduced the impact of this uncertainty by aggregating
the floats into three regions based on bathymetry and average hydrographic properties. The regions are
denoted “western,” “central,” and “eastern” Ross Sea (see Figure 1). The western region was sampled only
by ALAMO 10098, near Ross Island. The central region, defined here as east of Glomar Challenger Trough
and west of Houtz Bank, was sampled by five Apex floats and three ALAMO floats. The eastern region, east
of Houtz Bank to Cape Colbeck, was sampled by two Apex floats and two ALAMO floats.

Three central floats (Apex 5904166, 5904167, and 5904168) drifted generally northwestward, and three
(Apex 5904163, 5904165, and ALAMO 10103) moved southward along the western flank of Hayes Bank.
Near the ice shelf front, ALAMO 10102 moved steadily westward. ALAMO 10099, on the eastern edge of
Glomar Challenger Trough, remained nearly stationary; however, this float only profiled every 4 days, redu-
cing its exposure to ocean currents. The small net displacements of the eastern Ross Apex floats were north-
westward (Figure 1), while ALAMO 10100 followed a complex path through Little America Basin during its
period of free drift.
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3.2. Overview of Hydrographic Structure

The two sets of floats sampled most of the major regional water masses that have previously been identified
in the Ross Sea (Carmack, 1986); see Figure 2a. Differences in the regional distributions of water masses
recorded by the floats (Figures 2b–2d) are consistent with prior studies (e.g., Orsi & Wiederwohl, 2009)
including summer surveys close to the ice shelf front (e.g., Smethie & Jacobs, 2005). Examples of hydro-
graphic profiles from the six ALAMO floats (Figure 3) demonstrate the variability of water masses by loca-
tion and depth range. HSSW, with SP > 34.62, was observed in both the western and central regions but not
in the eastern region. Low‐Salinity Shelf Water, with SP < 34.62, was observed in the central and eastern
regions. ISW, defined as having values of θ below the surface freezing temperature, Tf0 (MacAyeal &
Thomas, 1986), was observed close to the ice shelf front. “Deep” ISW (see Figure 3b) is formed from ice shelf
melting at high pressure near the deep grounding line where HSSW comes into contact with the ice base;
this water mass exits the ice shelf cavity as subsurface plumes of intermediate salinity (34.48 < SP <
34.68). Some ISW is fresher (SP < 34.4) and with θ closer to Tf0 and exits the cavity as “shallow” ISW
(sISW; see Nelson et al., 2017 and Robinson et al., 2010) that may directly mix into the SML close to the
ice shelf front (Malyarenko et al., 2019). The sISW is formed when water masses that are less saline than
HSSWmelt relatively shallow ice close to the ice shelf front. Ventilation of sISW into the upper ocean north
of the ice shelf front may be assisted by across‐front tidal currents (Arzeno et al., 2014) and by eddies whose
generation may be related to density gradients and irregularities along the ice shelf edge (Li et al., 2017).

Antarctic SurfaceWater (AASW) is the lightest water mass, occupying broad ranges in both θ and SP. AASW
was detected by all floats in austral summer when sea ice had mostly melted and open water prevailed (typi-
cally about mid‐November to mid‐March). In the western region (Figure 2b), ALAMO 10098 did not survive
long enough into summer to observe significant upper‐ocean warming and freshening. AASW often includes

Figure 2. Ross Sea hydrography. Gray dots show distribution of potential temperature‐salinity (θ‐SP) from Orsi and Wiederwohl (2009) for all their gridded 3‐D
fields from locations with water depth less than 800 m south of a line from Cape Colbeck to Cape Adare. Red dots are float data from austral summer (16
November to 15 March); blue dots are all other float data. Data are presented for (a) combined data from all regions and separately for (b) western, (c) central, and
(d) eastern regions (see Figure 1 for region definitions). Overlain are two neutral density (γ) contours (solid black lines) used to distinguish water masses, the surface
freezing point of seawater as a function of SP (dotted line), and water mass annotations used in the text.
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Winter Water (Figure 3d), a cold but relatively fresh remnant of the previous winter's SML. Water masses
with intermediate density include mCDW, which is formed when warm CDW located offshore of the
continental shelf break mixes with shelf‐resident water masses including Low‐Salinity Shelf Water and
AASW. None of the floats analyzed here measured any pure CDW, which has not been found more than
a few kilometers south of the continental shelf break (Orsi & Wiederwohl, 2009; Whitworth & Orsi, 2006).

3.3. Seasonal and Interannual Hydrographic Variability Over the Midcontinental Shelf

Upper‐ocean hydrography recorded by two Apex floats (Figure 4; see supporting information Figures S3–S5
for all seven Apex floats for the full depth range) was dominated by a shallow, warm, and fresh SML in sum-
mer and a deep, cold, and saline SML in winter. Following Wong and Riser (2011), we defined the depth of
the SML, HSML, as the depth at which potential density was 0.05 kg/m3 greater than at the surface. We then
defined the mean potential temperature and practical salinity of the SML (θSML and SP,SML, respectively) as
averages of θ(z) and SP(z) from the surface to HSML. Time series of HSML, θSML, and SP,SML for all floats
(Figure 5) show seasonal and interannual variability and large variations between SML characteristics in
different regions.

Beginning in late November as Cice decreased (Figure 5a), typical values of HSML (Figure 5b) decreased
rapidly from wintertime values of more than 200 m to less than 20 m by mid‐December. The SML then dee-
pened slowly during summer to 50–80 m in mid‐February. Between mid‐February and mid‐March, sea ice
growth led to further deepening of the SML. In autumn, the deepening of the mixed layer began sooner at
the central floats than at the eastern floats (Figure 5b). At all locations, deepening occurred at rates between
2 and 5 m/day but ended sooner in the central Ross Sea, so that wintertime mixed layers tended to be shal-
lower (200–300 m) in the central region than in the eastern region (300–500 m). The deepest wintertime
mixed layers reached 500 m (~150 m off the seabed) at Apex 5904152 (Figure S5b).

To highlight the seasonal variability of θSML and SP,SML, we formed composite annual cycles by averaging
SML properties by week of the year over the entire observation period (>3 years). We further averaged these
temporal averages across floats, with separate ensembles for the central and eastern floats. The annual cycles
of mixed layer temperatures and salinities for the two ensembles followed counterclockwise loops in θ‐S
space (Figure 6). On 1 November, temperature was near freezing (−1.9 °C) for the eastern region and

Figure 3. (a–f) Example profiles from each of the six ALAMO floats. Each panel shows potential temperature (θ: black), practical salinity (SP: green), and the
surface freezing point of seawater (Tf0: blue), selected to illustrate specific water masses. Panels are arranged from west to east (see Figure 1 for locations and region
definitions and Table 1 for locations of floats by region). Note the date of each profile, provided above each panel. ALAMO = Air‐Launched Autonomous
Micro Observer; HSSW = High‐Salinity Shelf Water; dISW = deep Ice Shelf Water; mCDW = modified Circumpolar Deep Water; WW = Winter Water;
sISW = shallow Ice Shelf Water; LSSW = Low‐Salinity Shelf Water; AASW = Antarctic Surface Water.
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slightly warmer (~−1.8 °C) in the central region. Salinity in the SML for both regions on 1 November was
34.34. In the central region, starting from the end of winter (November) values, θSML increased and SP,
SML decreased until February after which θSML dropped with little change in SP,SML until March. Values
of θSML continued to drop and SP,SML increased through mid‐March then SP,SML increased to return to its
maximum value by November. In early winter, θSML for most floats was around −1.8 °C, slightly warmer
than the corresponding surface freezing point, with θSML warming slightly (~0.1 °C) from April to
October. In the eastern region, θSML and SP,SML were similar to the central region values until early
January, but by February the mixed layer was warmer and fresher. The SML cooled but continued to
freshen into early March. On 1 March, the salinity difference between the eastern and central mixed
layers was greater than 0.25. In both regions, salinity increased throughout winter.

The seasonal progression of upper‐ocean stratification recorded by the Apex floats was qualitatively consis-
tent each year; however, the duration, depth, and properties of the seasonal SML varied interannually
(Figures 4, 5, and S3–S5). In the eastern region, Apex floats detected warmer, more saline and deeper
SMLs in summer 2014–2015 than in 2013–2014. Conversely, in the central region, the SML was cooler
and fresher in 2014–2015 than in the previous summer.

3.4. Upper‐Ocean Hydrographic Variability in Summer 2016–2017 Near the Ross Ice Shelf Front

Warming and freshening of the seasonal SML along the ice shelf front commenced soon after deployment of
ALAMO floats (Figure 7). Typical values of HSML during December and January were 40–60 m. In the latter
half of the summer the SML cooled, freshened to 34.06, and deepened to 100 m by the last week of February

Figure 4. Sea ice concentration and upper‐ocean (0–250 m) hydrographic properties for two Apex floats in the Ross Sea. Left plots are for Apex 5904167 in the cen-
tral region and right plots are for Apex 5904152 in the eastern region. Rows are from top to bottom: (a, b) SSM/I sea ice concentrations, (c, d) potential temperature,
(e, f) salinity, and (g, h) N2. Black line in c–g represents HSML. Missing data near the surface are due to the profilers' sea ice avoidance software (see text).
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2017. For ALAMO 10102, θSML at deployment was at its minimum of −1.78 °C and SP,SML was ~34.38 (see,
also, Figure 5) after which θSML reached a maximum of −0.03 °C on 30 January 2017. After this peak, the
SML cooled while continuing to freshen, reaching a minimum salinity of 33.86 at ALAMO 10102. This
variability of summer θSML and SP,SML near the ice shelf front was more similar to that detected by
eastern Ross Sea Apex floats than to the SML variability of the nearer Apex floats in the central Ross Sea.

During the late summer period as the upper ocean cooled, near‐surface density reductions due to the
observed freshening exceeded the density increases due to cooling, resulting in a net decrease in near‐surface
density and the creation of a shallow, fresh, and cool SML overlying a near‐surface temperaturemaximum as
often seen in the Arctic (Carmack et al., 2015; Jackson et al., 2010). This feature is also seen in the Apex pro-
files from the midshelf region (Figures 4 and S3). In these ALAMO profiles close to the ice shelf front, this
subsurface temperature maximum emerges on 12 February 2017 at 100 m (Figure 7b) and persists at depths
of up to 150 m until the last profile on 5 March 2017, where its temperature was −0.8 °C.

4. Discussion

The annual cycles of SML properties recorded by the Apex floats (Figure 6) were closely related to the
observed cycle of sea ice concentration (Figures 4 and 5). However, the relationship between seasonal varia-
bility of atmospheric and upper‐ocean states is complicated by ice albedo and latent heat, freshwater, and

Figure 5. Sea ice concentration and properties of the surface mixed layer (SML) derived for each float. Floats in the eastern region “(E)” are in blue, central region
“(C)” are in red/orange, and the western region “(W)” is in purple. Left plots are for the seven Apex floats (2014–2017); right plots are for Air‐Launched
Autonomous Micro Observer floats (2016–2017). Rows are from top to bottom: (a) Special Sensor Microwave Imager sea ice concentration for Apex 5904152
(eastern, blue) and 5904167 (central, red) regions. (b) SML depth, HSML. (c) SML potential temperature, θSML. (d) SML salinity, SP,SML. LOWESS smoothing at
30 and 14 days was applied to Apex and ALAMO data, respectively. ALAMO = Air‐Launched Autonomous Micro Observer.
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salt fluxes (Petty et al., 2013, 2014), including complex feedbacks between
sea ice melting and convection (Martinson, 1990) that depend on mixing
processes which are still poorly quantified. Here, we focus on the controls
on upper‐ocean hydrography during the summer period when Cice was
low, so that ocean surface heat and freshwater fluxes can be estimated
from atmospheric reanalysis models without correcting for the poorly
known effects of sea ice on the atmosphere‐ocean fluxes. At each float
location we define the summer open‐water period as the time interval
between the first and last successful satellite communication (Table 1).

4.1. Changes in Ocean Heat Content

We used equation (1) to calculate the ocean heat content (OHC) anomaly
relative to the surface freezing temperature, Tf0(SP0). We chose the inte-
gration depth,Hint = 120 m, to be deeper than the maximum summertime
HSML (Figure 5b) and shallower than most mCDW (Figures 3b–3d). The
OHC anomaly throughout the winter was ~0.05 GJ/m2 (Figure 8a), a
small value indicating that water throughout the integration depth range
was near the surface freezing temperature. Brief intervals of elevated win-
ter OHC at two Apex floats in the central region (Figure 8a) were asso-
ciated with periods of mCDW shoaling (Figures 4 and S3). OHC
increased by 0.1–0.5 GJ/m2 between winter and when maxima in OHC

occurred, which was usually close to 1 February but was sometimes up to 2 weeks earlier or later.
Averaged across all seven Apex floats and all 4 years, the heat gained from the date of first float communica-
tion to the time of maximum OHC corresponds to an average rate of change of 76 ± 40 W/m2 (the quoted
uncertainties in this section are one standard deviation of the 28 separate estimates). Nearly all of the seaso-
nal heat storage in the upper 120 m was lost before the last communication of each season (Figure 8a), at an
average rate of −111 ± 53 W/m2. For summer 2016–2017, the time series of OHC from two ALAMO floats
(10102 and 10099) close to the ice shelf front (Figure 8a) showed similar seasonal changes.

Figure 6. Composite temperature‐salinity (θSML‐SP,SML) plot of surface
mixed layer (SML) for all Apex data. Loops are based on 3 years of data,
ensemble‐averaged into central (two floats) and eastern (five floats) regions.
The loops are followed counterclockwise, as indicated by the dates. Dashed
line indicates surface freezing temperature of seawater.

Figure 7. Hydrographic variability during summer 2016–2017 near the Ross Ice Shelf front from two ALAMO floats. (a, b) Salinity (SP) and potential temperature
(θ) for ALAMO 10099, profiling every 4 days near Glomar Challenger Trough. (c, d) SP and θ for ALAMO 10102, profiling everyday on the western slope of
Hayes Bank. Black line is the surface mixed layer depth, HSML. ALAMO = Air‐Launched Autonomous Micro Observer
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During summer when Cice is close to zero (Figure 5a), the surface heat flux into the ocean, QSFC, should be
approximately equal to the heat flux at the base of the atmosphere, QATM. To test how well the changes in
observed OHC could be explained by local atmospheric fluxes, we integrated ERA‐Interim QATM through
each summertime open‐water period for each float. The integrated surface heat flux sampled at each float
location increased until early February, typically 10 days later than OHC observed by the floats and then
decreased through March (Figure 8b). All of the summer heat gain was due to QSW, the only positive com-
ponent of surface heat flux (Figure 8c). Averaged over all floats and years, the peak magnitude of integrated
heat flux exceeded the peak measured OHC by 0.18 ± 0.09 GJ/m2. Each summer period free of sea ice ended
with accumulated heat from the atmosphere exceeding the measured OHC. We used this end‐of‐season sur-
plus heat to estimate that, averaged over the summer, ERA‐Interim surface heat fluxes exceeded the amount
needed to explain changes in observed OHC by 44 ± 18 W/m2. This bias may represent errors in the fluxes
provided by ERA‐Interim or that there is a cooling contribution in summer from other sources such as melt-
ing of residual sea ice and icebergs and advection of cold water.

Interannual variability in OHC and the integrated surface flux from ERA‐Interim was primarily related to
year‐to‐year changes in the onset of sea ice loss and the duration of the summer period of minimal sea ice
concentration. In summer 2014–2015, peak OHC in the eastern region was nearly double that in the central
region, where the onset of open water was 2‐3 weeks later than typical, based on time series of sea ice con-
centration (Figure 5a) and float communication records (Table 1). In agreement with Holland et al. (2017),
we suggest that the lingering ice pack delayed the increase in absorbed shortwave radiation until after the
insolation peak, resulting in relatively little warming (Figure 8b). Conversely, in December 2016, earlier
and more extensive open water (beginning in late November in the central region) captured the seasonal
peak of solar radiation and lengthened the period for heat accumulation, leading to a larger peak in OHC
in summer 2016–2017. The early disappearance of sea ice in that summer was due to wind stress

Figure 8. Measured ocean heat content compared with atmospheric radiative forcing for each float. Floats in the eastern region (E) are in blue, central region
(C) are in red/orange, and the single ALAMO float in the western region (W) is in purple. Left plots are for Apex floats (2014–2017); right plots are for ALAMO floats
(2016–2017) from top to bottom: (a) Ocean heat content (OHC) in gigajoules per squaremeter; LOWESS smoothing was applied to Apex (30 days) and ALAMO data
14 days). Times of first and last communications of Apex 5904168 of each season are indicated by blue squares and black crosses, respectively. (b) Time‐integrated
ERA‐Interim surface heat flux (GJ/m2) for each float, beginning at the start of each ice‐free period and ending at the time of last float communication each year.
(c) Components of ERA‐Interim surface heat flux from the grid cell closest to Apex float 5904163 in the central Ross Sea, with 14‐day LOWESS smoothing.
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anomalies that advected sea ice off the continental shelf (Turner et al., 2017, their Figure 3c). In early 2017,
open water persisted into mid‐March (last float communications in autumn 2017 from Table 1). We propose
that this later onset of sea ice formation in 2017 was caused by the increased upper‐ocean heat stored during
the 2016–2017 summer. Interannual variability in OHC will also be affected by differences in cloudiness,
which alters radiation fluxes at the surface, and windiness, which changes the turbulent (sensible and latent)
heat fluxes (Figure 8c).

The large differences between the integrated surface heat flux and measured heat content for the floats in
some summers (Figure 8) are caused by a combination of additional heat flux components and errors in sur-
face heat fluxes obtained from ERA‐Interim. Estimated vertical fluxes at 120 m (equation (3)) are small, −4
and 1–2 W/m2 for Ekman upwelling and turbulent mixing, respectively. We expect some contribution to
local heat fluxes from the Antarctic Coastal Current delivering water from the Amundsen Sea to the eastern
Ross Sea; however, this flux is difficult to quantify. Analyses of output from ocean circulation models that
extend well east of the Ross Sea (e.g., Nakayama et al., 2014) would improve our understanding of the poten-
tially seasonal contribution of advective heat fluxes to OHC variability observed by our floats.

The atmospheric flux estimates provided by ERA‐Interim also contain errors. The amplitude and timing of
the peak in the integrated surface heat flux (Figure 8b) can be brought into closer agreement with the
observed OHC (Figure 8a) by reducing the shortwave radiation flux by a quarter or by doubling the turbulent
fluxes. There are few data available in this region for constraining atmospheric reanalyses, especially over
the open ocean and sea ice. Errors in QSW may be associated with errors in cloudiness and surface albedo,
the latter being sensitive to ocean surface roughness at the low angles of incidence for insolation. Lenaerts
et al. (2017) showed that ERA‐Interim shortwave fluxes around Antarctica are biased low in the spring
and autumn but not in the summer, although the Ross Sea was not studied specifically. Turbulent fluxes
are sensitive to wind stress (Fusco et al., 2009). In comparisons with automated weather stations located
on land and ice shelves, Rodrigo et al. (2013) found that biases in wind speed can reach 10 m/s near coastal
zones, and Dale et al. (2017) found that wind speeds over the Ross Shelf Polynya are underestimated by 70%,
which has a significant impact on the turbulent fluxes that sustain HSSW production in winter. Cerovečki
et al. (2011) found that constraining an ocean model to observed heat content suggested that there are large
biases in surface heat fluxes at high latitudes of the Southern Ocean.

4.2. Changes in Freshwater Storage

We calculated upper‐ocean freshwater content (OFWC) using equation (4). For each Apex float, OFWC
reached a minimum in late winter, increased during spring, reached its maximum value in summer, and
declined through autumn and early winter (Figure 9a). We focus on two periods of freshwater input: spring,
the transition period when sea ice is melting, and summer, after Cice has declined to zero.

In spring, each float detected a change in freshwater content, between the minima near 15 October (close to
the time of expected maximum sea ice volume) and the first float communication of the year (Table 1).
During the springs of 2015–2017, the change in OFWC was 0.34 ± 0.05 m across all floats. We estimated
the thickness of sea ice (hice) at the end of winter by assuming that the observed increase in freshwater
was due solely to the complete melting of local ice. The freshwater content of sea ice is (ρice/ρ0)(Sice/S0‐1)
(hiceCice), where ρice and ρ0 are densities of sea ice and ocean (taken to be 917 and 1,028 kg/m3, respectively),
and Sice and S0 are salinities of the sea ice and ocean. Assuming uniform and non‐time‐varying values for Sice
= 4 (Cox & Weeks, 1974) and Cice = 0.85 (Jacobs & Comiso, 1989), we found hice = 0.51 ± 0.07 m. These
values are consistent with previous estimates of winter ice thickness in the Ross Sea (Kurtz & Markus,
2012; Martin et al., 2007); however, see Kurtz and Markus (2012) and Shepherd et al. (2018) for discussions
of the challenges of measuring Antarctic sea ice thickness from space. Potential sources of errors in our esti-
mate of hice in late winter include neglecting ice transport and divergence and other processes contributing
to upper‐ocean freshening during this period (see below). Some of the ice clearance in spring is due to wind‐
driven transport off the continental shelf rather than melting within the Ross Sea (e.g., Comiso et al., 2011;
Holland & Kwok, 2012; Turner et al., 2017), which reduces the ocean freshening relative to a model of local
ice melt.

In summer, after the end of the primary sea ice melt season as identified by the time of first float
communication (Table 1), OFWC at most floats continued to increase throughout the open‐water periods
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(Figure 9b) even though local sea ice melt could not be contributing significantly to the observed freshwater
flux signal (Figure 5a). The net freshwater gain from the first to last ice‐free days for each float for each
summer period (Figure 10) was positive, except for one float (Apex 5904168) in 2015. Summer freshwater
gains were usually largest in the eastern region. This increase cannot be attributed to local surface
freshwater fluxes since sea ice was minimal, and cumulative (P‐E) from ERA‐Interim was negative
(Figure 9c and Table 2). The higher values of freshwater gain in summer 2016–2017, relative to earlier
summers, may be associated with the same climate anomaly—a strong negative phase of the Southern
Annular Mode—responsible for the early loss of sea ice in that year (Turner et al., 2017). The associated
wind stress anomaly is directed offshore over the Amundsen Sea (Turner et al., 2017, their Figure 3). This
would intensify the westward flow of the Antarctic Coastal Current and drive an increased southward
flux of subsurface warm water in the Amundsen Sea to increase the production of freshwater by basal
melting of ice shelves (Paolo et al., 2018).

Although surface freshwater fluxes from ERA‐Interim have significant uncertainties at high latitudes
(Bromwich et al., 2011), we conclude that oceanic freshwater transport must play a significant role in this
summertime freshening in the Ross Sea. Previous studies have identified that the westward flow of the
Antarctic Coastal Current (Jacobs & Giulivi, 2010; Smith, Sedwick, et al., 2012) brings freshwater from the
Amundsen Sea into the eastern Ross Sea, as a combination of liquid freshwater, sea ice, and small

Figure 9. Ocean freshwater content (OFWC) and components of atmospheric moisture flux components. Left plots are for
Apex floats; right plots are for ALAMO floats. Rows are from top to bottom: (a) OFWC (m) derived from float measure-
ments, using equation (4). (b) OFWC tendency, d (OFWC)/dt (m/day). (c) ERA‐Interim estimates of precipitation (P),
evaporation (E), and the net atmosphere freshwater surface flux (FWATM: m/day) for grid cell closest to locations of Apex
float 5904163 in the central region, for periods where local satellite‐derived sea ice concentration is below 15%. LOWESS
smoothing was applied to Apex (30 days) and ALAMO data (14 days); ERA‐Interim data are smoothed at 14 days. Note
expanded scale for d (OFWC)/dt for 2016–2017 ALAMO plot (right). ALAMO = Air‐Launched Autonomous Micro
Observer.
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icebergs (Mazur et al., 2017). Moffat et al. (2008) discussed the dynamics of
buoyancy‐driven coastal currents and their dependence on the seasonal
modulation of melt rate. Much of this freshwater input at the Ross Sea's
eastern boundary past Cape Colbeck flows along the continental slope
in the Antarctic Slope Current (Thompson et al., 2018); however, some
turns southward into Little America Basin toward the eastern Ross Ice
Shelf front (Orsi & Wiederwohl, 2009, their Figure 5b). Realistic numeri-
cal model simulations (Dinniman et al., 2015; Kusahara & Hasumi,
2014; Nakayama et al., 2014) also demonstrate this freshwater pathway.
The sources of freshwater in the Amundsen Sea are the rapid melting of
its ice shelves (Depoorter et al., 2013; Paolo et al., 2015; Paolo et al.,
2018; Pritchard et al., 2012; Rignot et al., 2013) and melting of sea ice in
early summer.

We estimated the contribution of lateral advection of freshwater into the
eastern Ross Sea using the simulation reported by Nakayama et al.
(2014), who showed Amundsen Sea meltwater contributing ~2 m of fresh-
water to the eastern Ross Sea after 10 years of model integration (their
Figure 2b). This contribution suggests an annual‐averaged contribution
of ~0.2 m/a, which is in the midrange of our observed values of OFWC
increases during summer (Figure 10).

The dependence of eastern Ross Sea upper‐ocean freshwater and the asso-
ciated net stratification on upstream ocean/ice processes indicate poten-
tial for significant change if the Amundsen Sea continues to experience

increased inflows of CDW that drive ice shelf basal melting and modulate the seasonal cycle of sea ice for-
mation and melting (Dinniman et al., 2018; Timmermann & Hellmer, 2013).

4.3. Freshwater Gain Near the Ross Ice Shelf Front During Summer 2016–2017

During summer 2016–2017, ALAMO floats 10099 and 10102 measured increases in OFWC of 1.1 and 1.4 m,
respectively (Figure 10), near the Ross Ice Shelf. Following prior studies (e.g., Jacobs & Giulivi, 2010;
Nakayama et al., 2014; Smith, Sedwick, et al., 2012) and the analyses in section 4.2, we expect that advection
from the Amundsen Sea is a substantial contribution to total freshwater gains near the ice shelf in summer
(Smith, Sedwick, et al., 2012).

The freshwater gains observed by these two ALAMO floats are larger than values observed at the Apex floats
further north of the ice shelf, suggesting the presence of additional sources of freshwater. Following Jacobs
et al. (1985) andMoffat et al. (2008), these potential sources include (i) summer excess ice shelf basal melting
under the shallow outer portions of the Ross Ice Shelf (Arzeno et al., 2014; Horgan et al., 2011; Malyarenko
et al., 2019; Moholdt et al., 2014), (ii) mass loss from the ice shelf's vertical face (e.g., Gayen et al., 2016;
Magorrian &Wells, 2016), and (iii) blowing snow (snow falling on the Ross Ice Shelf that is then blown into
open water by the prevailing southerly winds; Knuth et al., 2010).

Figure 10. Excess freshwater content, the freshwater content change
between the start and end of the ice‐free summer season, minus the
cumulative (P‐E) from ERA‐Interim over the same period. Apex floats are
shown as colored symbols, blues for eastern region floats and red/orange
tones for central region floats. For 2017, black symbols indicate values
derived from the two Air‐Launched AutonomousMicro Observer floats near
the Ross Ice Shelf front.

Table 2
Estimated Freshwater Contribution From Different Sources Near the Ross Ice Shelf Front in the 2016–2017 Summer

Freshwater budget term Source Controlling ratea and volume Freshwater (m)b

Measured freshwater ALAMO floats (Figure 10) 0.8–1.4
FWATM ERA‐Interim −0.7 mm/day −0.06
(i) Summer excess ice shelf basal melting Arzeno et al. (2014) 0.5 m/a over 50 km of ice shelf 0.12
(ii) Mass loss from ice shelf vertical face Error estimate for InSAR ice velocities 50‐m/a loss rate (melting plus small iceberg calving) 0.06
(iii) Blowing snow ERA‐Interim 0.43 m.w.e./a over the northern ice shelf 0.04
Sea ice meltc See section 4.2 0.5c

Note. ALAMO = Air‐Launched Autonomous Micro Observer.
aMean January/February rates. bMeters of freshwater accumulated over 3‐month period. cFor comparison only: freshwater released locally before the start of
the sea ice‐free summer.
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We estimated the magnitudes of these three potential SML freshwater sources for the summer period of
about 90 days free of sea ice (Table 2). For both the ice shelf mass loss terms and blowing snow, we assumed
that the fluxes at the ice shelf front were distributed evenly over a 50‐km‐wide zone of open water in front of
the ice shelf. For (i), we assume that the summer basal melt rate was ~0.5 m/a higher than the winter mean
over a zone of the ice shelf ~50 km wide (Arzeno et al., 2014) and that all summer excess was advected into
the open ocean north of the ice shelf front. Over the 90 days of summer, this provided ~0.12 m of freshwater.
For (ii), we assume a maximum potential “lateral” melt rate of 50 m/a, corresponding to an error of ~5% in
satellite‐derived ice shelf velocities of ~1 km/a near the ice shelf front (Mouginot et al., 2012). Our estimate
includes formation of small icebergs that might completely melt near the ice shelf front. Assuming a mean
ice front thickness of 250 m (Schaffer et al., 2016) equates to 0.06 m of freshwater. To estimate (iii), we
assumed that all snow falling on the outer 20 km of the Ross Ice Shelf was ultimately blown into the ocean
before significant mass loss could occur through evaporation; this estimate is based on satellite visible band
images over the Ross Ice Shelf front. A summer precipitation rate on the outer ice shelf of 1.18 mm/day (0.43
m/a) water equivalent applied over 90 days equates to 0.04 m of freshwater averaged over the 50‐km open‐
ocean zone. These three terms (Table 2) sum to roughly 0.2 m of freshwater in excess of that provided
by advection.

For comparison, the average summer atmospheric freshwater flux (FWATM) from ERA‐Interim at the cen-
tral region float locations was −0.7 mm/day (Figure 9c); this is negative because the persistent evaporation
from open water (average of ~3.4 mm/day) exceeds the summer precipitation (average of ~2.7 mm/day). The
net atmospheric flux integrated over summer was ~−0.06 m; this acted against the trend toward freshening
during this period.

While each estimate has large uncertainties, this additional freshwater sis generally consistent with the ele-
vated OFWC at ALAMOs 10099 and 10102 relative to the easternmost Apex floats (Figure 10). That is, the
dominant source of upper‐ocean freshwater along the Ross Ice Shelf front in summer is advection from
the Amundsen Sea, but additional local sources at the ice shelf significantly increase the freshwater content
feeding into the westward flowing current along the ice shelf front.

The excess freshwater along the ice shelf front during summer would increase the upper‐ocean buoyancy,
improving the efficiency of ventilation of the outer portion of the sub‐ice shelf cavity by warmer offshore sur-
face waters (Malyarenko et al., 2019). In turn, this process accelerates ice shelf basal melting. The additional
buoyancy also reduces the heat loss required to initiate sea ice formation (Martinson, 1990) in early autumn.
The initial stage of sea ice growth near the ice shelf front is not reflected in Special Sensor Microwave Imager
time series of Cice because net southerly wind stress drives the freshly formed sea ice away from the front
(Figure 1). Increased upper‐ocean buoyancy may also suppress deep convection from brine rejection and
the resulting production of HSSW in polynyas (Silvano et al., 2018), thus modifying the primary source of
ocean heat for melting the grounding lines of deep East Antarctic glaciers flowing into the Ross Ice Shelf
(Tinto et al., 2019).

5. Conclusions

Seven Apex (December 2013 to March 2017) and six ALAMO floats (austral summer 2016–2017) have pro-
vided the first measurements of seasonal to interannual variability of upper‐ocean hydrography over the
Ross Sea continental shelf, which is covered by sea ice for about 9 months each year. Setting the parking
depths of most floats to deeper than the seabed substantially reduced their lateral motion relative to free
drifting floats, allowing the Apex floats to remain on the continental shelf for more than 3 years, sampling
four summers. Themultiyear records from the Apex float deployments, with weekly profiling, have provided
the first accurate measurements of the annual cycle of upper‐ocean heat and freshwater content (OHC and
OFWC) on the midcontinental shelf. The ALAMO floats obtained profiles with more rapid sampling closer
to the Ross Ice Shelf front, providing the first time series of the upper ocean in this region through the devel-
opment and decay of the summer SML.

The observed increases in OFWC from late winter to the onset of open water conditions are generally con-
sistent with local melting of sea ice, starting at a late winter thickness of ~0.5 m. However, values of OFWC
continued to increase after sea ice disappeared, with the largest increases in the eastern Ross Sea and along
the Ross Ice Shelf front. This freshening is inconsistent with the modeled excess of evaporation over
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precipitation for open water in the Ross Sea in summer. Estimates of the freshwater contributions from the
nearby Ross Ice Shelf suggest that it cannot account for all of the excess freshwater, pointing to an advective
source of freshwater from further east in the Amundsen Sea. We speculate that the additional freshwater
input modifies the ocean stratification and dynamics of water mass exchanges across the ice shelf front,
including the subsurface inflow of HSSW, and shallower exchanges of seasonally warmed AASW that leads
to relatively high melt rates along the northern Ross Ice Shelf. Additional freshwater also retards the onset of
deep convection that produces HSSW in the western Ross Sea in winter.

During the short summer periods during which the Ross Sea was mostly free of sea ice, changes in measured
OHC in the upper 120m of the ocean were substantially smaller (44 ± 18W/m2) than those obtained by inte-
grating surface fluxes from the ERA‐Interim reanalysis. Some of this difference may be due to errors in the
ERA‐Interim surface flux that could arise from deficiencies in the radiation budget from amisrepresentation
of clouds and the ocean's surface characteristics and the dependence of turbulent fluxes on boundary layer
winds and stability. However, as with the freshwater budgets, we propose that one cause of this difference is
a flux of cool water (perhaps augmented with low‐concentration sea ice and iceberg fragments that melts
locally) in the Antarctic Coastal Current which flows westward from the Amundsen Sea. There are no direct
measurements of freshwater and heat fluxes into the Ross Sea from the Amundsen Sea, but these fluxes are
now represented in high‐resolution regional ocean models that include ice shelf melting and sea ice. Future
studies of output from these models, guided by the new profiler data sets reported here, should provide new
insights into the dependence of hydrographic variability in the Ross Sea on changes in the Amundsen Sea
and its rapidly melting ice shelves.

These novel measurements identify the need to improve quantification of freshwater fluxes from the
Amundsen Sea to the eastern Ross Sea and along the ice shelf front and to narrow uncertainties in the factors
that modulate the atmospheric heat fluxes into the upper ocean in summer. The data set will provide con-
straints for models of Antarctic SML evolution under a variable sea ice cover, including for the complex
region near the Ross Ice Shelf front where offshore katabatic winds modify the sea ice cover and the
ocean‐atmosphere exchanges of heat, freshwater, and momentum on small spatial and temporal scales.
Improved physical understanding of these processes will contribute to other disciplines focused on coastal
ecosystems and the response of the Antarctic Ice Sheet to ocean‐atmosphere‐ice interactions around
its margins.
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